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i A COMPARISON OF NUMERICAL METHODS FOR IDENTIFICATION

AND OPTIMIZATION PROBLEMS INVOLVING CONTROL SYSTEMS WITH DELAYS

H.T. Banks, J.A. Burns and E.M. Cliff

= ABSTRACT

In this report we present numerical results for two approximation

] techniques for functional differential control systems. One technique is

: ?1 based on an averaging scheme, the other on spline approximations. A number
of examples are considered and the techniques are applied to parameter

estimation problems and optimal control problems where the systems are given

J by differential equations with hereditary terms.
1




1. Introduction.

This report is devoted to a detailed study, via numerical
experiments, of certain algorithms for the control and identification
of linear hereditary systems. In particular, we shall consider two
schemes ("averaging' and linear "spline'" approximations) which are
based on the general approximation method developed in {17, [27,

"37, °57. The purpose of this report is to present examples which
facilitate a comparison of the aumerical performance of these two

schemes for parameter identification and for optimal control pro-

blems. We shall not dwell upon theoretical convergence results.

The interested reader is referred to [ 5] for complete statements

vf convergence results, error estimates and detailed proofs.

2. Notation and problem formulation.

The following notation will be used throughout the paper. For
< a<b <+ o, Lp(a,b;R?) is the usual Lebesque space of equi-
valence classes of all functions x:[a,b] — R" such that |x‘p is in~
teg;able. Let 3 = [O,r] where r > 0 is a fixed real number, and
Z will denote the Hilbert space Z = R" X LZ(-r,O;Rn). For
0 <t 42r, the space Rn X Lz(‘T,O;Rn) will be denoted by Z(t). The
Sobolev space wél)(-r,O;Rn) consists of all functions in Lz(-r,O;Rn)
with derivatives also in LZ(-r,O) and norm given by
]¢|2(1) = lw}i + )é)Li. We assume that 3 and § are compact con-
vexwgubsets of R* and 2, respectively. Moreover, § is assumed to
have the property that if ¢ € S and 0 < T < r, then the projected

function




i
i
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(2.0) ©(s) =

0 R -r € s < =7

also belongs to S.

Let Q=Q x Hand " = § x Q, so that a generic element of I has

I

the form v (M®sa) = (My¢,a,7). The elements Y of T are called

the system

parameters. We assume that for each a €[, Ao(a), Al(o)

belong to Rnxn, B(q) € Rnxm’ C(a) ¢ kan, D(a) € kam and K(a,.)

. . . . . n
is an n x n matrix valued function with columns in L2(-r,O;R ).
If X:[-1, + ») = Rn and t > 0, the function xt:[-T,Oj - R" is

defined by xt(s) = x(t+s). For q = (&,T) € Q, the operator L(q) is

defined by
0
L(@)e = 4@ (0) + &) @7 + { K@@, $)o(s) ds.
-T

We consider the system governed by the linear retarded functional

differential equation

(2.1) x(t) = L(@)x, + B(®)u(t), t 2 0,

with initial data
(2.2) x(0) = 7 =
and output

(2.3) y(t) = C(@)x(t) + D(a)u(t)

—— vy
. .




where u is a R — valued, locally integrable control function and
(M%) € Z. Given a control u and y € ', the solution of the initial
value problem (2.1)-(2.2) at time t will be denoted by x(t;vy,u).

The corresponding output to (2.1)-(2.3) at time t > O will be denoted

by y(t;vy,u).

REMARK. Note that the initial function ¢ need only be defined
on [(-7,0]. Ift <randg € LZ(-T,O;Rn) we shall identify ¢ with
the projected function @ € Lz(-r,O;Rn) defined by (2.0). With
this understanding, any function in LZ('T,O;Rn) is also an element
of LZ(-r,O;Rn). Consequently, for notational convenience we shall
not distinguish between ¢ € L2(~T,O;Rn) and § € L2(-r,0;Rn).

We shall be concerned with the system on a fixed finite interval
{0,T] where T > 0. The matrices G and W are n x n symmetric positive
semi-definite, R is an m x m symmetric positive definite matrix and

;1, ;2, ety ¥y are given '"observations" in Rk at times to

0 gt, <t, < «0e <t, «T. The above notation is summarized in

1 2 M

the following list of nomenclature:

r=sxQ=8x0x¥4 - Parameter set

Y= (M9,9) = (M:@,0,7) - System parameters

G, W --=-oomommomeeooooce oo Symm. positive semi-definite
R ----cmommonomoemccmcooeoceees Symm, positive definite

T =-=-ccccmcncnccccccocnconacan. Fixed final time




0 st

] S0 < tM ST -~cmemeeaaa Observation times

;1» ;é, tee, yM ------------------ Observations.

e S e T

We now formulate two infinite dimensional optimization problems

associated with the hereditary system described above.

P LSRR

. The identification problem may be stated as follows:

;-

E,} PROBLEM (ID). Given the control u in L2(0,T;Rm) and observations
i ) ;i € Rk at timesg ti’ find the system parameters Y* € [ which minimizes
o § i .

2
|

3

, M _
- (2.4) E(y) = %1;—21 lyCegsy,u)-y,

where y(t;y,u) is the output Lo (2.1)~(2.3), and the minimization

N takes place over T.
- The optimal control problem may be stated as follows:
- ¢

By

PROBLEM (OC).

Civen the system parameters y ¢ Iy find a

control u* in LZ(O,T;RF) which minimizes the performance criterion

T
(2-5) J(u) = Hx(T)Gx(T)] + gg (x" (s)Wx(8) +uT(s)Ru(s) ] ds,

0

where x(t) = x(t;y,u) is the solution to the system (2.1)-(2.2).
Ihe optimal cost will be denoted by J* (i.e. J* = J(u*)).




3 ) It should be noted that the above formulation of the identifi-

cation problem allows for the case where some of the system para-

T R

meters Y = (7,9,%,7) are known.

ld — L
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3. ' The abst-ract Cauchy problem and approximations.

In order to implement any numerical algorithm for solving the
identification and optimal control problems, it is necessary to in-
troduce approximations at some stage of the solution process.

The basic idea used in this paper is to approximate the hereditary
system by an ordinary differential system. We give a brief outline
of the general framework and present two particular schemes. Details
of the method may be found in 727, [3] and [57.

It is helpful to formulate the hereditary system (2.1)-(2.3) as
an abstract system in the Hilbert space Z. Although this formulation
is not essential if one is concerned only with numerical results, it
is informative and indeed necessary if one is to fully understand
the basic ideas underlining the methods to be discussed here.

Given q = (a,T) €0 x Y, define for t > 0 the mapping

S(t;q):2(T) =~ 2z(T) by
S(t;9) (M) = (x(t3q), x,(+3q))

where x(+;q) is the solution to the homogeneous equation i(t)= L(q)xt
with initial condition (x(O),xO) = (M,®). It is well knawn that for
each fixed q,{s(t;q)}tzo is a Co-semigroup on Z(t) (see [27, [37).
Moreover, the infinitesimal generator of {S(t,q)}tzo is the operator

a(q) defined on the domain

§@(@) = () € 2(r) o € Wy (-r,0:R™), 6(0) = 1)

by
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aQ) (1:9) = (L(Q)p,®)

Define B(q):Rm - Z(t) and C(q):2(T) — Rk by B(q)u = (B(a)u,0)
and Cc(q) (M,p) = C(a)7), respectively. Corresponding to the hereditary
system (2.1)-(2.3) we have the abstract (ordinary differential)

system in Z(r)

(3.1) z(t) = a(q)z(t) + B(q)u(t),
(3.2) 2(0) = (M),
(3.3) y(t) = c(q)z(t) + D(a) u(t) .

A mild solution to (3.1)-(3.2) is given by the variation of para-

meters formula

t
3" z(t;y,u) = S(t;q) (M) + S S(t-s;9)B(q)u(s) ds.

0
The following result is fundamental for all the approximation

methods we consider. Its proof may be found in [47.

THEOREM 3.1. Suppose that vy = (T,9,q) €T and u € LZ(O,T;Rm).

If x(t;y,u) denotes the solution to the hereditary equation (2.1)-'

(2.2), then z defined by (3.4) satisfies

3.5) z(tyy,u) = (x(t;3v,u),x, (+5y,u))

for all t 2 0. In particular, the output to the abgtract system

(2.3).
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It is clear from the above equivalence that the hereditary
system (2.1)-(2.3) can be approximated by approximating the abstract
system (3.1)-(3.3). In order to approximate (3.1)-(3.3), it follows
from the formula (3.4) and the equivalence (3.5) that one must
approximate the following;

i) the initial data (m,¢),

ii) the semigroup {S(t;q)}tzo’

iii) the operators B(q), c(q).
The approximation of the initial data is accomplished by projecting
(7M,%) onto a finite dimensional subspace of Z(7). 1In order to

approximate S(t;q), recall that S(t;q) is an evolution operator

Whlch is Sometimes Written
S(t = [O(Q t
( SQ) C ) ]

even though Q(q) is unbounded. However, this (formal) identigication
illustrates the basic idea; S(t,q) is approximated by approximating
a(q). Similarly, we must approximate §(q, and (C(q). Consequently,
we construct approximating systems to (3.1)-(3.3) (and hence (2.1)-

(2.3)) by

1) projecting (7,p) onto some finite dimensional sub-
space of Z(T),

and

2) approximating the operators (q), 8(q) and ¢(q).

Although the above remarks are based on formal ideas, the
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steps outlined above can be effected in a rigorous mathematical
framework. We shall not attempt to develop the relevant theory in this
paper; rather we refer the interested reader to (57,

We turn now to the two particular schemes that we have tested
rather extensively on a number of numerical examples. The first method
(AVE) is based on step-function approximations to the initial function
¢, while the second method (SPLINE) is based on linear spline

approximations to g.

AVE: Corresponding to the partition tg = :ﬁl, j

[-7,0], we define the subspace Zﬁ(T‘ = {(M%) € 2(t) |9 is a constant

= 0,1,+¢¢,N, of

N
on each of the subintervals [t?, tj_l)}. Let Pﬁ(f) be the orthogonal

projection of Z(r) onto the closed subspace Zi(T). In particular,

A (Me) = Mo’
with

N N
@ (s)~ 2

N N
©. X:(s) ,
je1 4

1

where x?(s) is the characteristic function for [t?, t?-l) and v? is

the mean (average) value

N_N
oy =7 {7 w0 s,

j=1, 2, «¢¢ N. We take (ﬂ,QN) for our approximation to the

initial data (7,9). To approximate Q(q), observe that the first
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coordinate of Q(q)(T,9) is simply L(q)y and the second coordinate is

5. Let K?Gx) be defined by

N
ti-1 0 y
K?(Cl) = S K@,s)ds = S K(x,s) xj(s) ds
N T
J
N N N NN N _
and suppose that (vo,w) = (vo, = vj xj) belongs to ZA(T). Define

j=1
L.N(q) and DN Q) by

N
Ly(@) (vgo¥) = Ko@) v + A @y + 5 K@)

j=1

and
N . _N NN NN
DN(Q) (Vogw) ‘jfl T[Vj_l Vj] XJ' .

The operator ¢(q) is approximated by the finite dimensional operator

QN(q) on le\('r) defined by

0"(@) (vg,4) = (L@ ()5 Dy @ N, ) .

If an appropriate basis for Zri('r) is selected, then R(N‘H)n

can be identified with ZI:(T) and the above scheme leads to the

following approximating system. For N > 1 define the [(N+1)n] x [ (N+1)n]

matrix AN(q) by

(p—-y

[E——_




S S —

NP s e e e <o A " —3
' -11-
I A K@+« o« K@ A @K@
N -N
;’I ',,TI 0 . . . 0
N N -N
(3'6) A (q) = 0 ?1 ',FI ] . .
o . . . 0 ;rN-I 'g— I ,
- d

where I is the n x n identity matrix. The [(M1)n] x m matrix

BN(q) and the k x [ (N1)n] matrix CN(q) are defined by

B) ]

(3.7) @) =| - | and  M(q) = (C(e) O ... 07,

respectively.

The approximating ordinary differential system (of dimension

(M1)n is given by

(3.8) Ny = a¥@)2N(e) + BN (q)u(r)
(3.9) o) = zg
(3.10) Yty = cN@N(e) + dlauce) ,
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where zg = °°1(ﬂ:¢T:"',¢:)- The approximate system (3.8) - (3.10)

will be referred to as the AVE approximation to (2.1) - (2.3).

N ’
of T-r,0] we define the subspace %?(T) = {@(0),0) € 2(r)|p is a tirst

SPLINE: Corresponding to the partition t? =t j=20,1,.-.,N,

order (niecewise linear) spline function with knots at t§.i=0,l....,N.}.

Let Pg(T) be the orthogonal projection of Z{(r) onto 22(7); Note
that if (7,9) € Z(7), then Pg(T)(n,Q) belongs to 2(2(q)). One can
argue that Pz(y)(n,¢) - (1,9) as N - +o and hence it is not un-
reasonable to expect that for (m.9) € 8@())

lim PI;(T) Q(q)PI;(T)(T]:‘P) = a(q) (o) -

=]

N

§(1) = Z3(r) by

Consequently, we define QN(q):Z

(3.11) 0"(@) = Py ac@) Pir).

In order to represent the operator aN(q) and construct an
ordinary differential system in Euclidean space, we follow the
general outline given by Banks and Kappel 787, Let e?,j=0,l,---,N
denote the scalar first order spline function on {-+,0] characterized
by

N N
e(t = + 4 i, .=0, l, "'N,
30 T Gy B

where 6ij is the Kronecker symbol. The matrix aN = [3?,...,8:+1]

defined by

N

N _ . N N
B = [eo’ el’ e, eN]® I

Sy

PO
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(where R denotes the Kronecker product) is such that the sct

AN N N
= 0
Bj (Bj( ) Bj)

N
j=1,2, ...,N+1, forms a basis for ZE(T). With this basis ZQ(’)
N+
is identified with R( Ln and the following system may be con-

structed.

Let QN(q) be the [(N+1)n] x [ (N+1)n] matrix

N 1 1 B
:-FS E 0 . . . 0
1 2 1
6 3 6
. ) \
N T .
(3.12) Q (q) = N ] . ~
0 1 2 1
. 6 3 6
1 1
0 SR = x
L 6 3
—
and
(3.13) H'(q) = H)(@) + 1))
? ' where

N
; ' Hl(q) and Hg(q) are [(M1)n] x [ (N+1)n] matrices defined by




_ .
Ao(a)+l\0(u) kl(a) .
0
(3.14) Hl:(q) =
|
0
with
~ O
K?(a) - S K(a,s) e?(s)ds,
-
and
5 -5
(3.15) u‘;(q) =
| AN E
|
0 —— 0

. E§~l(°) Al(a)+-k:(u)

0

5 -%J

It follows (sece [ 8 J) that aN(q) = Pi(*)a(q)PZ(T) has the

[(+1)n] x T (W1)n] matrix representation
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(3.16) T = (d1t ) .

Define the [ (W+1)n] x m matrix(EN(q) and the k x [(N+1)n] matrix

~N
C (q) by -
(B(a)
0 -
@1 N -t L | e F@ = fc@ oo,
L0 -

respectively. Any vector zN € £§Cr) can be written as

N
b4 =

M=z

N N,_N
(e, (0),e)E, ,
=0 J 3723
N " N N . . N .
where ij € R'. Thus, the vector z € ZS(T)can be identificd with Lhe
vector col(gg,glf,...gg) in R(N+l)n_

The approximating ordinary differential system becomes

(3.18) ey = NN + Tiaue) ,
(3.19) 2N(0) = zg ’
(3.20) yNe) = M@ (e) + D@u(t) ,

where zg is the vector in R(N+1)n

We shall reter to the system (3.18) - (3.20) as tle SPLINE approximation

identified with Pz(T)(n,w) E zt(w).

scheme for (2.1) - (2.3).

REMARK. When making computations involving the spline system

(3.18)-(3.20) one never actually computes [QN(q)]"1 but rather




-16-

solves

[QN(q)]WN = HN(q)vN

directly in order to obtain wN = ;N(q)vN.
Both of the above schemes (AVE and SPLINE) fall within the
general theoretical framework presented in 757, where convergence

results and error estimates are given.

4. The approximating problems.
The system (3.8)-(3.10) will be called AVE and the system

(3.18)-(3.20) will be called SPLINE. Both are ordinary differential
systems (of dimension (N+1)n) that approximate the dynamical
response of the hereditary system (2.1)-(2.3). In order to state
an approximating identification problem, we must approximate thc
constraint set [,

Suppose that ¥y = (1,9,9) € I and that Pi(?)(ﬂ,w) and Pg(’)(ﬁ.w)

(M1)n

have the representations in R given by

A Me) = (1,8}, 00p

e

N N N N
PS(T)(T],({)) (gosgl!"”gN)

(N+l)nx Ru x R

Let ni and ng denote the mappings from Z x R* x R to R
defined by

H:('ﬂ.w,a,‘f) = (PK(T ) (n’w) 30 T)

and




B 2

TR Ty

P S S

LRSS

—

. m—

—_—t

-17-

nt;('ﬂ,wyﬂ','r) = (Pg(T)(ﬂ,CP) ’QaT)

Thus motivated, we choose the approximating constraint sets as
Ti = :: T and Tg = Zg I'. For each of the systems (3.8) - (3.10) and

(3.18) - (3.20) we have the following approximating parameter ident-

ification problem:

PROBLEM (IDN). Given the control u in L,(0,T;R") and obser-

N N ,~N __N
Aérl\('.\c‘b)

vations ;i € Rk at times ti find the parameters Y

which minimizes the fit error

(4.1) oM = g
i

I

N ..N - ,2

where yN(t;v",u) is the output to the AVE system (3.8)-(3.L0)

(SELINF system (3.18)-:¢3.20)), and the minimization takes place

N N
over I, (over ‘S)'

Given a parameter y = (7,9,qa,T), one may construct the
approximating systems AVE and SPLINE, corresponding to y. Lct

N N
G and W be the (N+l)n square matrices defined by
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fp: L) L °
P
g . o o . . . 0
K- S
i and ‘J
' ]
. F W o 0
‘ 0 O . .
b N
3 W =
y ‘
; 0 0 . . . 0
L_ o
\ ‘ For each of the approximating systems AVE and SPLINE we have ii
! i the following approximating optimal control problems: ’
'S ] [
3
‘ 3
& ! PROBLEM (OCN). Given the system parameters Yy € [, find a
i
i control Gﬁ (ﬁg) in LZ(C,T;Rm) which minimizes the performance !;
! criterion N
3 T ¥
N ) N ' T T
5 @.2) = A E @M+ 8| () W ()’ (9)Ras)as, §
S
9 l 0 lc‘i
N N . -
\ where =z (t) = z (t;y,uv) is the solution to the AVE system (3.8)- ’
, -
(3.10) (SPLINE system (3.18)-(3.20)). The optimal cost will be
denoted by 3N(i.e. M- JN(’C;N)), {j
b
|
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I For each N, the approximating identification and optimal
| control problems are now finite dimensional in the sense that the

;
}

: s ’ dynamical systems AVE and SPLINE are governed by ordinary differ-
?- | ' ential equations in R(N+l)n. The basic idea is to solve (for
fixed N) each of these problems to obtain QN, ?g, ﬁ: and ﬁg. It
can be sbown that under reasonable conditions Qz and §§
“converge" to y* and ﬁﬁ and ﬁg converge to u* (see [ 5] for a pre-

0y cise statement of the r:sults).

The remainder of this paper is devoted to the study of numer-

ical examples. 1In particular, we compute QE: ?g’ ﬁi and ﬁg and

compare these values with the optimal values Yy* and u* for a

e Dasekutgis . s AT o

e

1 number of hereditary systems. In doing so, we hope to demonstrate
that the method is feasible to implement and that acceptable con-
ﬁ. | vergence rates are obtained.

; All of the numerical results presented in the next sections
were produced by computer programs written at Virginia Tech and
Brown University. The identification problems were run at Virginia
Tech on an IBM 370/158 computer. A maximum likelihood (least

squares) algorithm was used to solve the approximating problem (IDN).

A complete discription of the method and listing of the code may be
E 1 found in the report [ 9]. The optimal control problems were run at
Brown University on an IBM 360/67 computer. For both the linear

and nonlinear control examples a conjugate-gradient minimization
algorithm (as described in [ 1 ]) was used to solve the approximating

problem (OCN).




5. Numerical solutions to the identification problem.

In this section we present a number of numerical results for
the identification problem (PROBLEM (ID)), that are based on the
approximation schemes (AVE and SPLINE) outlined in the previous
sections. In order to generate most of the data for testing the
algorithm we select a "true" set of parameters y*= (T¥,u%, 0", T+)
and a control u and use the method of steps [ll_ to solve for x
on the interval [0,T].

In all of the examples presented below we used t* = 1 and

u =y, where uL is the unit step at t = £ defined by

0 t <4,
“L(t) =

1 1 <t,

and 0 < ¢ < 1. The final time of T = 2 was used in most of the

examples (except 05.1). The observations ;i = y(ti) were gencrated

at 101 equally spaced time steps on [0,T]. In some examples noise

was added to the model to produce ''moisy observations"
yt) = y(t) +v(t),

where \(t) = col(vy(t),se+,y, (t)) is a computer simulated vector
1 k

of normal random variables vi(t) (routine GGNQF of the IMSL library,

see IMSL Users Guide), each with zero mean and preset standard

variation.

PP
. .
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For each fixed N, the approximation Problem (IDN) was solved

using a maximum likelihood estimator (MLE). Since the MLE is an

—

i iterative procedure it is necessary to supply a startup (i.e. an

initial guess) for the optimal parameter ?g (or Qg for the spline

scheme). If B denotes an unknown parameter to be estimated (i.e.

1 B =a or B =, etc), then BN’I will denote the estimate for EN
ﬁ obtained after I iterations of the MLE applied to PROBLEM (IDN).
3 The startup value will be denoted by BN’O.

It is helpful to understand the numbering system for the
identification examples. The first two characters in the example
number indicate what model is used for the generation of data. The

number after the decimal point refers to the specific numerical

run. For example, all 'S2" examples are problems where the '"true"

system is governed by
. x(t) = .05 x(t) - 4.0 x(t-1) + u.l(t) s
; ‘ Xy(s) =1, -1 ss<0,
y(e) = x(t) .

In EXAMPLE S2.1 we assume that af = ~4.0 is unknown and attempt

W ; to estimate this parameter, while in EXAMPLE S2.2 we assume that

the time delay r* = 1.0 is unknown and estimate this parameter,

etc.
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The figures are labeled at the top. In the left hand cormer |

the lettering indicates the example number, the value of N and the

approximation scheme. For example, S2.1N16A refers to Example

S2.1, N = 16 and the AVE procedure. The lettering in the right

!
hand corner represents iteration number in the MLE algorithm.
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ID MODEL S2

This is a simple scalar model with discrete delay. The

system is govermed by
x(t) = .05 x(t) ~ 4.0 x(t-1) +u l(t:),
with initial data

x(0) = 1 and xo(s) =1, =-1ss<0.

The output is simply the state at time t, viz:

| y(t) = x(t) .

As described above, this system was analytically integrated (using

the method of steps) to comstruct the solution on [0,2]. The

4 ‘ resulting solution was evaluatod at 101 equally spaced points to

generate data for the following four examples; S$2.1 - 8S52.4.

———t

—— v v = e
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EXAMPIE S2.1

In this initial example we consider the problem of identifying

a single parameter, namely the coefficient of the delayed term in

the model S2. Thus, in our parametric model the dynamics are des-

cribed by

x(t) = .05 x(t) + alx(t-l) + u.l(t)

with initial condition

x(0) =1, xo(s)

m

l, -1l «s<0,

and output
y(t) = x(t) .

For N= 2, 4, 8, 16 and 32 the resulting Problems (IDN) were
"solved" using a version of the computer code described in [ 9].
Since the numerical algorithm is iterative, it is necessary to

provide a '"start-up" value for a; and in this example we used

The algorithm provides a sequence of "improved" estimates for ET
and will terminate when either a maximum number of iterations is

achieved, or when the norm of the gradient of EN is less than 1()-3

In the latter case we claim that the procedure has "converged'.
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Results of the numerical experiments for this example are
shown in Table S2.1.1. Notice that for N = 2, the AVE procedure
had not '"converged'" at 10 iterations, and that the SPLINE estimate
of the parameter at N = 4 is better than the AVE estimate at N= 32.

By using the parameter values we can estimate the rate of

convergence as

o Clleyll 7 lleyyll
on 2

where e, = ?N - ¥* ig the error. From N = 2 in the SPLINE estimates
we find § = 1.7, while for N = 4 in the AVE result we estimate

§ = .12. Such estimates for the rates of convergence must be

viewed with caution because the numerical values are corrupted by

sources of error other than the approximation scheme.

Figures S2.1.1 and S2.1.2 show the converged data fits at
N = 16 for AVE and SPLINE, respectively. The N = 32 results are

essentially the same as those for N = 16.

Since computer requirements are of practical interest, we
note that for N = 32, the AVE algorithm took about 15 sec. per
iteration, while the SPLINE procedure required a little over 16
sec. per iteration. This comparison is not completely fair
because the majority of the code used is common to both AVE and

SPLINE and it is structured to provide the generality needed for
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the SPLINE method. A streamlined code for AVE alone might pro-

duce as much as a 20% savings in execution time.
g

AVE SPLINE

N N
N 4 Inl | n A ley|
2 did not converge 2 -4.1655 .1655
4 -4.1144 1144 4 -4.0505 .0505
8 -4.1050 .1050 8 -4.0208 . .0208
16 -4.0852 .0852 16 -4.0139 .0139
32 -4.0584 .0584 32 -4.0122 .0122
af = -4.0000 of = ~4.0000

TABLE S2.1.1




3.00

1.80

-0.61

-1.81

~3.00

27~

5c. INIGH

T k() = .05x(t) + a;x(t-1) +u (£)
4 +++ data al = -4.00
—— AVE Model 816’7 = -4.0852

—tt
0.00 0.40 0.80 1.20 . 60 2.00
T IME
FIGURE S2.1.1
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X(t) = .05x(t) + alx(t-l) + u.l(t)

-+ * = . —
{.80 +++ data al 4.00

— SPLINE Model a

16,4 _
1

-4.0139

1 0.60
. —_
{ i
4 N
}_
-0.61
:
-1.81
I )
-3.00 T S e
0.00 0.40 0. 80 1.20 1.60 2.00
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FIGURE S2.1.2
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EXAMPLE S2.2

In this example we consider the problem of identifying the
time delay alone, with all other parameters known. Thus, the

parametric model of the system is

x(t) = .05 x(t) 4.0 x(t-r) + u 1(t)
with initial condition

x(0) = 1, xo(s) =1,-r s <0,

and output

y(t) = x(t) .

As before, we conducted numerical experiments for N = 2, &4, 8,

16 and 32. Our start-up was

N, O
r’ =.5,

while the true value is of course r* = 1.0. At N= 2 and N = 4
an interesting phenomenon appeared; namely, for the start up value

N, 0
of r '’

= 0.5 the AVE procedure 'converged'" and the SPLINE pro-
cedure "diverged'. To examine the causes of this result we
evaluated the cost function Ea for AVE and SPLINE at a variety of
r values. The interesting results of this investigation are shown

in Figure S2.2.1. It happens that the SPLINE cost function is

more ''oscillatory" than the AVE cost function for N = 4. Both
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have two local minima. However, the SPLINE cost function is such
that the start up r4’0 = 0.5 is not in the valley of the "global"
l minimum (}g = ,9972), while for the AVE procedure, r4’0 = 0.5 is
E- | in the valley of the global minimum (?: = 1.2001).
é : When the cost function has more than a single local minimum,
Eu the system is said to suffer a lack of (global) identifiability
%f.1 (at least for the specified input). In such cases it is important
E - to have good start-up values for the parameters.
% { Table §2.2.1 illustrates the convergence for this example.
%  i Note that for the reasons outlined above, different start-up
; @ values were used for AVE and SPLINE. Again the results show that
i for N = 2 the SPLINE algorthim gives better estimates of the
parameter r than AVE for N = 32. Figures S2.2.2 and $2.2.3 show
g- the N = 4 data fits for AVE and SPLINE, respectively. EE
- i N,0_ N,0 ”}
AVE r =0.5 SPLINE r = 0.8
i X 2 ey N P ley! !
2 1.4603 .4603 2 1.0084 .0084 ‘
4 1.2001 .2001 4 .9972 .0028 E
8 1.0923 .0923 8 .9983 .0017
16 1.0439 .0439 16 . 9986 .0014 [j
32 1.0212 .0212 32 1.0018 .0018 [?
r* = 1.0000 rx = 1.0000 ‘
; TABLE S2.2.1 B

—
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T

S2. 2NUAY [TR= 6

| 71 T 1 1

x(t) = .05x(t) -4x(t-r) + u.l(t)

+++ data r* = 1.0

— AVE Model r4’6
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FIGURE s2.2.2
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S52.2NUSP

; T T T I I T 17 T
jL x(t) = .05x(t) - 4x(t-r) + u_(t)
4 +++ data r* = 1,0000
——— SPLINE Model ra’5 = ,9972
-+
4
+
4 ——+
.00 0.40 0.80 1.20 1.69
TIME.
FIGURE S2.2.3
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EXAMPLE S2.3

In this example we consider the problem of estimating the two

coefficients in the model. Therefore, the system is modeled by
x(t) = aox(t) + alx(t-l) + u.l(t)

with initial data
x(0) =1, xo(s) =1,-1<s <0,

and output

y(t) = x(t) .

Numerical runs for N = 2, 4, 8, 16 and 32 were conducted. The

start-up values for 36 = .05 and af = -4.0 were chosen to be
N,O N, 0
a .03 and a, -3.0 .

Table S2.3.1 contains a summary of the estimates for both AVE and
SPLINE. The £, errors (!Qg - agl + !ET - HY!) are given in Table
§2.3.2. Note that the SPLINE estimate at N = 4 is better than the
AVE estimate at N = 32.

Figures S2.3.1 and S2.3.2 show the converged data fits at
N = 16 for AVE and SPLINE, respectively. Observe that the SPLINE

procedure provides almost a ''perfect’ match to the data.




I
1
|

s ——— e e e e

AVE SPLINE
!
' ~N N =N 2N
: A ! ! 20 A
i
S 2 1.0869 -4.6236 2 .0995 -4.1639
o
| 4 .6525 -4.3160 4 .0417 -4.0523
fj‘i 8 .3825 -4.1660 8 .0439 -4.0222
S
5 i 16 L2245 -4.0898 | 16 .0449 -4.0151
L 32 .1384 -4.0505 | 32 0454 -4.0133
y* = .0500 -4.0000 | y* = .0500 -4.,0000
TABLE S2.3.1
AVE SPLINE
l lel l 1yl
2 1.6605 2 .2134
4 .9185 4 .0606
8 .4985 8 .0283
16 .2643 16 .0202
32 .1389 32 .0179
TABLE §2.3.2
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52. 3NIBS

3.00

-+ X(t) = aox(t) + alx(t-l) + u.l(t)

d
1.80 = +++ ata a

—— SPLINE Model a

Pre o

3,00 A ——F——f ]

0.00 0.40 0.80 1.20 1.60 2.00

TIME
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EXAMPLE S2.4

This is the first example in which the "original" identification prob-

lem is truly infinite dimensional. In particular, we seek to estimate

the initial data (7,p) € R X Lz(-l, 0; R) and the coefficient of the

delayed term. Thus our model is described by the scalar equation
x(t) = .05 x(t) + alx(t-l) + u.l(t),
with (unknown) initial data
x(0) = 7, xo(s) = @(s). , -lss<0,

and output

y(t) = x(t)

For each N = 2, 4, 8, 16 and 32, the approximating problem (IDN)
was formulated as discussed in Section 4. Thus, for AVE we seek

the "parameter"

oN N N N
YA (n’(pl’cpzi ICPNQal) s

where (ﬂ,¢§,¢§,---,¢g) represents the projection of the initial

data. Similarly, for SPLINE we seek the ''parameter"
A N _N N
Yg = (§0,§1,--',E_,N,al) ’

where (gg,gf,,--~,g:) represents the SPLINE projection of the initial

data. The "start-up" for (1,¢) € R x LZ(-l, 0; R) is the zero

S—

[ ¥ e
[ e ]

rerin o
[ )
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-

B
-

D umy
.



initial data (0,0), while its true value is (1, 1). The

"'start-up" for af = -4 is

a = -3.0 .

Table S2.4.1 provides an overview of the results. Because the
initial data is in R x L2(-1, 0; R) we have only displayed the
Z-norm of the error and the estimated value for aT. The com-
parison of the two schemes is quite striking, particularly the
relative ability to estimate the initial data. Showm in Figure
S2.4.1 are graphs of the true initial data and the corresponding
estimates produced by AVE and SPLINE for N = 4. It is apparent
at least for the chosen "start-up" values that the SPLINE pro-
cedure readily finds good estimates for the parameters, while the
AVE scheme has considerable difficulty.

It is interesting to compare the sequences of data fits
generated as the iteration procedure evolves. Figures $2.4.2
through S2.4.4 show the data matches from the AVE algorithm for
iterations 0, 4 and 9, respectively. From the match at iteration
4 (Figure S82.4.3) it might be deduced that AVE is in trouble. How-
ever, at iteration 9 the fit is quite good and Figure S2.4.4 does
not give any hint of the poor values of the parameters indicated
in Table S2.4.1.

Figures S2.4.5 through S$2.4.7 illustrate the SPLINE data

matches at iterations 0, 4, and 9 respectively. Again the iteration
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4 matches indicate some difficulty while by iteration 9 the match

is quite good. It happens that the SPLINE estimates of the para-

meters are excellent.

I e TS grvas WIS c<coma

Although one can not be certain, it does appear that AVE is

f o

!
|
!
1 converging to a local minimum of EN. As in example S2.2 we

]
g,

suspect that the IDN problem for AVE suffers a lack of identifiability.

The IDN problem for SPLINE seems to be much better behaved.

P ———
[ R | L

In order to further investigate identifiability for problems
with unknown initial data we essentially repeated this example

with identical dynamics, changing only the initial data to
m=1, og(8)=1+s, -lss<0.

Using the same start-ups as above we found that SPLINE converged

for all N values, whereas AVE never did. Results are summarized

in Table S2.4.2.

AVE SPLINE
N W fz*@-2Yo) | ' |lr0-2%0)
2 -4.4103 2.08 2 -4.4382 .1595
4 -4.9924 4.53 4 -3.9381 .0867
8 -4.2651 41.76 8 -4.0031 .0287
16 did not converge 16 -4.0031 .0201
32 did not converge 32 -4.0001 .0386

TABLE S2.4.1
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!
‘ AVE SPLINE
% % - ~N
at: llz*0)-2%(0) | N aI: llz*(0)-2" (0)||
2 2 -4.5201 .0563
4 did not converge 4  -4.0975 .0318
8 8  -4.0282 .0123
16 16  -4.0123 .0193
32 32 -4.0122 .0936

TABLE S52.4.2

(linear initial data)
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ESTIMATE OF INITIAL DATA
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52 . UNBAV. [TR=4

3.00 T T T T
-+ R(t) = .05x(t) + alx(t-l) +u l(t) ~
x(©0) =1, x,(8) = w(s)
1.80 7T +++ data i
—— AVE Model
-+ "T
0.60
-
o
E -0.61
}. 4
[
-1.81
|
|
1
-3.00
0.00 0.40 0.80 1.20 1.60 N0

T'IME "

FIGURE S2.4.3 ‘




o TTRATT T

[ —y

Tl

3.00

1.80

0.60

~-0.61

-1.81

-3.00

0.

-45-

o2 . UNBAV.
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52 . ENBOF
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_ID MODEL 01

This model describes a (reasonably realistic) mechanical

oscillator with retarded restoring and retarded damping forces.

The system is governed by the second order equation
®(t) + 36x(t) + 2.5 x(t-1) + 9x(t-1) = u.l(t)
with initial data
xo(s) =1, io(s) =0, -l1<s <0,
and scalar output (which represents position)
y(t) = x(t) .

This second order equation is equivalent to the two dimensional

system

x @] [0 1]fx @] [o o xz(t-n“ (o
+ +

d =

u l(t) s
dt ‘
x2(t) -36 0 xz(t) -9 -2.5 xz(t-IZJ 1

with initial condition

~
&N
N
i

-lss <0,

aaliigin




I R

i -50- |
| [
|
| ;
{ and output
f Xl(t) ;
y(t) = [1 0] :
3 x, () |- l
B
:3'f§ This system was integrated forward (using the method of steps) to ‘

obtain the analytic solution on [0,2]. Again, data was generated

b, ! at 101 equally spaced points by evaluating the true solution. This 1

| data was used in the following examples; 0l.1 - 01.2.

o
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EXAMPLE 0l1.1

This experiment is devoted to the estimation of the three
coefficients in the model. Therefore, we assume our model is

described by the second order equation

o 2 .

%¥(t) + w x(t) + aox(t~1) + alx(t-l) =u 1(t)
with initial data

xg(s) =1, kO(S) =0, -1<ss50,

and output
y(t) = x(t)

The problem is to estimate w, a, and a;.
Since the basic system is two dimensional for each N the approx-
imating systems for AVE and SPLINE is of dimension 2.(N + 1). 1In

order to keep the program size reasonably small (our objective is

to test the algorithms and not to develop computer codes) we

solved the approximating identification problems for N = 2, 4, 8
and 16. This alloweq us to use the same code for scalar and two
dimensional systems without increasing the '"'size" of the code;
therefore keeping the computing cost minimal.

The start~up values for y* = 6, a6 = 2.5 and af = 9 were

c N,0
w = 5.0 , a, 1.0 , a,’ = 5.0.

KA B e A

i
‘Siom,

v W

AN

’

£ dup
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Tables 0l1.1.1 and 01.1.2 show the parameter estimates for
AVE and SPLINE, respectively. Observe that the N = 16 estimates

produced by the AVE procedure are such that the "relative Ll
ley!

N
ty*]
SPLINE estimate has relative Ll error of less than 1%.

error' ( ) is approximately 20%. On the other hand the N = 16
Figures 01.1.1 - 10.1.4 compare the data fits for N = 2. The
start~ups (ITR = 0) are shown as well as the converged fits
(ITR = 10 for AVE and ITR = 14 for SPLINE). Figures 0l.1.5-01.1.6
show the converged data fits for N = 16. Note that in this
case both AVE and SPLINE converged after 4 iterations of the MLE
algorithm. However, the SPLINE procedure provided a near perfect
data fit.
This example is typical of most of the vector systems that
were studied. Generally speaking, the SPLINE algorithm produced

better parameter estimates and data fits.

AVE
~N AN AN

u ol % 4 o

2 6.3864 -12.8383 4.,2478 20.4769
4 5.7480 - 5.4170 7.3614 9.8076
8 5.6564 - 1.8301 9.7648 5.4385
16 5.7873 3.6873 6.6713 3.7287
y¥ = 6.0000 2.5000 9.0000

TABLE 0l.1.1

J—



[}
SPLINE

t

i 1\N “N AN

| X i % 4 oy

|
3 2 6.1102 -5.7950 10.3718 9.777
F % 4 6.4861 5.6291 13.2680 7.8832
y | 8 6.0432 2.8791 9.2921 7144
. -i 16 6.0079 2.5761 9.0591 .1431
A
T v 6.0000 2.5000 9.0000

) TABLE 01.1.2
é

S ol
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!
i ' e o
| O1.1IN2HV T TH= 10U
i ' 2.00 T T I I ! ] T N 1
'» ' LR + wPx(0) + agh(e=1) + apx(e-1) = u_ (€) _
9 i ’ l
= 1.20 T .
.
S
v.‘ %
L' .
3 0.40
.l ; r—\‘
~0. 41
-1.20
~
| L +++ data w* = 6.0 a¥ = 2.5 a¥ = 9.0 -
~——  AVE Model w2102 63864 8(2)’10'12.8383 af’w-a.zws
1 -2.00 - 1 o e e | 1
0.00 0.40 0.80 1.20 1.060 2. 00
| TIME
' FIGURE Ol.1.2
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I J1. INZ2SF
- 2.00 ﬁ' T T | T l
' + R(E) + wix(t) + agk(£-1) + ax(e-1) = u . g
! S
[} '{
: 1.20 7T
! N
| -
| 1 ] i
g .
i -
b4
i 0.40 T y =
R o !?
' — 4
; ‘“ T ™
. | L
| It
| :
-0. 41 -+ ' lj
¢ T 4
i
| : | i
] -1.20 T .
1
| :
+++ data w* = 6.0 a;
: _ 2,0 _ 2,0
lSPLINElModel ) f’?" f,'i,,, QOF
-2.00 1 | T
0.00 0.40 0.80 1.20 1.60 2\ G

TIML |

FIGURE 0l.1.3
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g1, 1N2SP [TR= 14

2.00 71T T o R S R T I l

T %+ wlx(6) + agk(t-1) + apx(e-1) = u 4 (®)

-0. 41

-1.20

+++ data w* = 6.0 a

o SPLINE Model w2’ = 6.1102  a2’1%=-5.7950 ai'14= 10.3718

------ i R

0.40 0.80 .20 1.60 2. 00

= 2.5 a’i‘ = 9.0 *\
\
\

oN OF

T IMF

FIGURE 01.1.4
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& 01, 1N1GA CITR
; 2. 00 'T I L 1 T T I ] \
{ |
_1L_ %(t) + wzx(c) + aoic(t-l) + alx(t-l) = u.l(t) ] :
: !
1 1.20 T
- T i
T d
_‘
S 0.40 T -
. _ ¥
i ~ ‘
{ — [ . -®
> .
7
0.4t T !3
I *q
-1.20 T 3
Y +++ data "% = 6.0 ag = 2.5 a) = 9.0
| i
\ -+ i
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' 0.00 0.40 0.R0 1. 20 1. bu 2. 00
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, FIGURE 01.1.5 Q
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0. N 0.0 Q. KO roo0 N *
T I ME
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EXAMPLE 01.2

In this example we identify only the time delay r. The system

is assumed to be governed by the model
%(t) + 36x(t) + 2.5 x(t-r) + 9x(t-r) = u l(t) ,
with initial data

xO(S) =1 , ko(s) =0, -r<s <0 ,

and scalar output

y(t) = x(t) ,

where r is the unknown delay.

This example proved to be very interesting. The start-up

r* = 1.0 was taken to be

rN’O = 1.2

At N = 2, the AVE procedure did not converge (in fact estimates
for ?2 were growing without bound), while the SPLINE algorithm
converged to the estimate ?2 = 2.3476. At N = 4, SPLINE produced
the estimate ?4 = ,9830. However, for N = 4, AVE converged to the
estimate of ?4 = 4.8694. For higher N, the SPLINE procedure pro-
duced better and better estimates. At N = 8 the AVE scheme pro-

duced a sequence of MLE estimates that oscillated between the values

.7000 and 1.3000. More precisely, the MLE iterations continued Lo

oo

p o . .
R e, N, . i T

e 4

:
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produce sequences similiar to

T e T I T T

ees 7113, 1.0477,1.2755, .+ , .7082,1.0396,1.2811 ...

Consequently, the N = 8 AVE scheme never ''converged'"! At N = 16,

both AVE and SPLINE converged to reasonable estimates of the

—

parameter r.

{
. , . ,0
X This example was repeated using a start-up value of rN = .8

TN T

‘ and the results were exactly the same. Table 01.2.1 contains a

summary of the convergence for this example. Figures 01.2.1-01.2.4

i
illustrate the start-ups and converged data fits at N = 16 for AVE
: and SPLINE.
{
1
5 AVE SPLINE !
1 '\N I\N
- y Ll N v eyl
2 did not converge 2 2.3476 3.3476 {
i ﬂ ;
1 4 -4.8694 5.8694 4 .9830 .0170 z
8 did not converge 8 .9939 .0061 §
, 16 L9274 .0726 16 .9987 .0013
-
N
* r* = 1.0000 r* = 1.0000

TABLE 01.2.1
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01.2N15R

___{
_J

3

2.00
1.20
.40
{
>__
-0.41
-1.20
~
~-2.00

T x(t) + 36x(t) + 2.5%(t-r) + 9x(t-r) = u‘l(t)

++++ data r¥ = 1.0
—— AVE Model r16’0 = 1.2
e e S N EE S
0.00 0.uo0 0.80 1.20 1.60

T T 1 T

TIME

FIGURE 0l1.2.1
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] 91.2N16F TR U

{ 2.00 T T T T T 1 i I
IR
4+ %x(t) + 36x(t) + 2.5%(t~-r) + 9x(t-r) = u 1(t) =
1.20 T B
0.40
Lo |
- |
- |
~0.11 1
|
{
|
!
- -1.20 j
- J
!
TF— +++ data rx = 1.0 n i:
—— AVE Model 164 = 9274
~2.00 t+—F— + p—} t %
0.00 0.40 0.80 1.20
TIME

FIGURE 01.2.2
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[ TH="

0.00

%(t) + 36x(t) + 2.5%(t-r) + 9x(t-r) = u.l(t)

+++ data

— SPLINE Model

e

0.40

TIME

FIGURE 01.2.4
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ID MODEL 02

This model is the oscillator governed by the equation
%(t) + lex(t) + 1Ox(t-1) - 10x(t-1) = u l(t) ,

with initial data

il
o

xO(s) =1, io(s) -l<s <0,

and scalar output

[}

y(t) = x(t) .

As before, data was generated at 101 equally spaced points by
solving the system analytically and evaluating the solution. This

data was used in the following examples; 02.1 - 02.2.
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EXAMPLE 02.1

Here we identify all three of the equation coefficients. The

model is described by
R(E) + wx(E) + agk(t-1) + a;x(e-1) = u (t)
with initial data
xo(s) =1 , ko(s) =0, -l<gs<0,

and output

y(t) = x(t)
We seek to estimate the true parameters w* = 4.0, 33 = 10.0 and
af = -10.0. Start-up values for these parameters were selected to
be
M=, §%=0.0, &%= -9.0.

Runs were made for N = 2, 4, 8 and 16. The results for AVE and
SPLINE are summarized in Tables 02.1.1 and 02.1.2, respectively.
Again, the error |eN! is taken to be in the Ll norm, and the
relative Ll error at N = 16 is about 3% for AVE and less than 1%
for SPLINE.

Figures 02.1.1 - 02.1.2 show the N = 16 AVE data fits for the
start-ups and converged values of the parameters. Figures 02.1.3-

02.1.4 show the N = 16 SPLINE data fits for the start-ups and
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converged values of the parameters. The SPLINE procedure clearly
does better.

In this example (as well as others) we checked the CPU times
required for each run. The two schemes AVE and SPLINE basically
require the same amount of computer time for each iteration of the
MLE algorithm. For example, at N = 16, the AVE scheme used approx-
imately 17.75 sec/ITR while the SPLINE scheme used approximately

18.40 sec/ITR. Such figures are typical of all the runms.

AVE
~N ~N ~N

u v %0 il Loy

2 did not converge

4 did not converge

8 3.4386 12.3634 -6.6389 .7128
16 3.9826 10,4641 -9.7997 .6818
vk = 4.0000 10.0000 -10.0000

TABLE 02.1.1




]

SPLINE
N " 4 &) ol
2 3.8092 9.0371 -9.3642 1.7895
4 3.9751 9.9323 -9.9241 .1685 ‘
8 3.9963 9.9511 -9.9978 .0548
16 3.9943 9.9920 -9.9812 .0325
v¥ = 4.0000 10.0000 -10.0000

TABLE 02.1.2
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2. 1INI1GH I TH= 0
- T T y ] 1 S e LR
R(E) + wox(t) + agh(t-1) + a x(t-1) = u | (t)
+++ data w* = 4.0 83 = 10.0 a* = -10.0
—— AVE Model '%:0-/35 a36’°=0.0 a(])'6’0 = 9.0

FIGURE 02.1.1
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IN16A [T
F G 2 n J_ N | I ILW - \3
{ 1 3.00 T I T I T T IR A S
i
i ) 2
, 4 X(E) + 0w x(t) + agk(t-1) + a;x(t-1) = u ,(t) .
.: +++ data w* = 4,0 ag = 10.0 ag = -10.0
' 2,40 T ——— AVE Model w183 3.9826 a36'3=10.4641 ai6’3 = -9.7997
|
M J— i
1.80
N
—t
Veamn
1.20
- 0.560
~
|
|
[ 1
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0.00 0.40 0,80 1,20 1.60 .
|
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l FIGURE 02.1.2
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| |
| ?
} + %(t) + wlx(t) = agk(t-1) + ax(t-1) = u_ (t) -
i |
| ] .. ‘- . |
! +++ data w* 4.0 ag 10.0 81 10.0 (
N !
e 2.40 T SPLINE Model '’ = /20 8(1)6’°=0.0 aif”o = -9.0 .
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Ue. INIDS

§

o

[ TH=

®(t) + wix(t) + agk(t-1) + ayx(t-1) = u_ (t)

+++ data w* = 4.0 ag = 10.0 a%

16,4

———— SPLINE Model w ’ = 3.9943

FIGURE 02.1.4
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EXAMPLE 02.2

In this problem we seek to estimate the coefficients of the
delayed terms and the time delay itself. 1In particular, we assume

that the system is governed by the model
x(t) + léx(t) + aoi(t-r) + alx(t—r) = u.l(t),
with initial data
xo(s) =1 , io(s) =0, -rgs <0,

and output

y(t) = x(t) ,

and the true parameters to be estimated are ag = 10.0, a? = -10.0

and r* = 1.0. Start-up values for each run were

2% =110, N0 90, M0=12.

Convergence results for this example are summarized in Tables 02.2.1

and 02.2.2. At N = 16 the relative 2. error for AVE is approximately

1

1t

3.5%, while the N 16 SPLINE scheme produced a relative Ll error
of less than 1%.
Figures 02.2.1 and 02.2.2 show the N = 4 converged data fits

for AVE and SPLINE, respectively. For N = 8, the data f{its are

nearly perfect and are not shown.

-

[Uee——— O o gty ¥ asmrywyg



AN N
a () = Jenl
2 did not converge
4 54.5124 -9.1876 2.4190 46.7439
8 19.4941 -9.4927 1.3506 10.3520
16 10.6433 -9.9089 .9998 .7346
y¥ = 10.0000 -10.0000 1.0000
TABLE 02.2.1
SPLINE
il % : = Jenl
2 9.2585 -10.5360 1.0908 1.3683
4 10.0927 -10.0619 1.0076 .1622
8 9.9724 -10.0177 1.0010 0463
16 9.9811 -10.0108 1.0017 .0314
vk o= 10.0000 -10.0000 1.0000

TABLE

02.2.2

B e T
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)
2.40 T —— SPLINE Model ag’“=1o.o927 a‘l*"‘=-1o.0619 £ %=1.0076 |
1.80 7T
—
>__
1.20 T
iR
:
L
1
- .60 T
.
: sppspttt
* 1 -+
)
|
o.op 4 b=t b b e = é
, 0.00 0.un 0. 80 1. 20 1.R0
T Ml
l FIGURE 02.2.2

5 0 e




-78-

T

1. MCDEL 03

This model is also a harmonic oscillator; however we shall use
A ‘ both position and velocity as output data. In particular, the

model is governed by the equation
x(t) + 4x(t) + x(t-1) - x(t-1) = u L8

or in equivalent vector form,

xl(t)_1 0 1'] x, (6) Fo 0 xl(t-l)—I 0]
| | ;

d

T + a i +;

r
|
!
I

|

; xz(t) -4 0 xz(tlj L}. -1 ng(t—l\_J L_l_J

with initial data

-lss <0,

e

o
N
—~
/2]
N
(]
—
(@]

and vector output

AR 1o e
y(t)=! =
: o 1
yz(t)‘] L x, (t)

This system was solved analvtically to obtain data at 101 equally

spaced points tor Examples 03.1 - 03.4.




EXAMPLE 03.1

For this problem we seek to estimate two of the systems co-
efficients. In particular, the model is assumed to be governed

by the equation
%(t) + 4x(t) + aoi(t-l) + alx(t-l) = u.l(t)
with initial data
xp(8) = 1, ko(s) =0, -l<s g0,
and vector output (both position and velocity)

y,(t) x(t)
y(t) = =

¥, (t) x(t)

The true parameters ag = 1.0 and af = -1.0 were estimated using

start-up values of

ay 0= .75, A %= -5

Runs with N = 2, 4, 8 and 16 were made and the convergence
results are summarized in Tables 03.1.1 - 03.1.2. Note that at
N = 16, the AVE scheme produced parameter estimate 3 considerably

worse {(about 167% '""relative Ll error’) than the N = 8 estimate

(about 77% error). The N = 16 SPLINE procedure gave estimates with

less than 2% relative error.
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4
P
f ‘ Typical data fits are illustrated in Figures 03.1.1 -03.1.8.
& Figures 03.1.1 - 03.1.2 are the N = 8 AVE start-up daca fits for
b the position (Y(1)) and velocity (Y(2)), respectively. The con-
gi: :
§ ; verged N = 8 AVE data fits are shown in Figures 03.1.2 - 03.1.4.
[ :
%; e Figures 03.1.5 - 03.1.8 show the same data fits for the N = 8
%: ; SPLINE procedure.
.
;.:
;
& AVE
~N AN
N 2 4 len|
‘ 2 1.1437 - .8789 . 2648

4 1.1504 - .9221 .2283
3 8 1.0951 - .9579 .1372
; 16 .7215 -1.0483 .3261

y* = 1.0000 -1.0000

TABLE 03.1.1
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{
SPLINE
AN N
| h & 4 el
. 2 1.2474 -1.0991 .65
: 4 1.0256 -1.0350 .0606
{
; 8 .9936 -1.0137 .0398
16 .9739 -1.0100 .0361
¢ = 1.0000 -1.0000 :
{ TABLE 03.1.2

=i
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U3. INSHYV

|
]
U
H
1O

. —+  X(t) + 4x(t) + aoi(t-l) + alx(t-l) = “.l(t) -

+++ data

;i I 1.10 T — AVE Model a

.
1Y)
!}
—
o
4]
]
[
-
o
e IR o L‘.,:..,_v [ —

-0.11

-0.50 f I | | 1 ‘% | { { l}
0.00 0.40 0.80 1.20 1.60 2.00 4

TIME U

FIGURE 03.1.1
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J3. INBHY

4 ®(t) + bx(t) + agx(t-1) + a;x(t-1) = u 1(t)
+++ data ag = 1.0

4
—— AVE Model ag’o = .75

i l
! L 1 | ¥
40 0.80 1.20

TIME

FIGURE 03.1.2
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LTB:QO

+++ data

— AVE Model

a

%
0
8
0

4 x(t) + 4x(t) + aoi(t-l) + alx(t-l) = u.l(t)

-1.0

= 1.0 a

,10 ,10

= 00 == ¥}

= 1.0951 a = -.9579

Y1

1
| { { | ! | | | |
I I T ¥ T | 1 1 T
.00 0.40 0.80 1.20 1.60

TIME

FIGURE 03.1.3
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| 03. INBAV

118= 10

{ 2.00 T 7
! T %() + 4x(t) + agk(t-1) + ajx(t-1) = u | (t) -
‘i * = * = - .
.i +++ data a, 1.0 ay 1.0
1.20 T .
—— AVE Model ag’lo = 1.0951 a?_’m = -.9579

0.u0

-0.41

tP -1.20 -
F

-2.00 +————F—————f
0.00 0.40 0.80 1.20 1.860 2.00

]

l j
TIME 4

] ‘

FIGURE 03.1.4
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J3. INBOSP

i
1

+++ data a

— SPLINE Model a

®(t) + 4x(t) + aoi(t-l) + alx(t-l) = “.1(t)

4

|
0.40 0.80 1.20

TIME

FIGURE 03.1.5
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- 03. IN8SP 175=0

| 2.00 L
- Y2 ]
+ %(t) + 4x(t) + ao)'c(t-l) + alx(t-l) = u 1(t:) 7
.& .
E ‘ +++ data aa‘ = 1.0 a’l‘ = -1.0
: b.20 —— SPLINE Model ag’o = .75 ag’o = -.75
3
F 0.40 i
. i
{
h‘ 3
P ~0. 41 #
.
3
- ~-1.20 T
N
:
4 e -
;
1 -2.00 f— Pt e AR a—
|
\ 0.00 0.40 0.80 1.20 1.60 2.00
t TIME
' l FIGURE 03.1.6
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T x(t) + 4x(t) + aoic(t:-l) + alx(t-l) = u.l(t) —
+++ data ag = 1.0 a; = -1.0
10T L spine Model aa1? = L9936 a3 = -1.0100 i
0.70 ‘
g
0.30
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FIGURE 03.1.7
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EXAMPIE 03.2

~ S AR e O e~ NI N i,

In this example we attempt to estimate all of the system co-

efficients. Consequently, the model is assumed to be of the form

x(t) + wzx(t) + aoi(t-l) + alx(t-l) =

with initial data

xo(s) =1 , >'<0(s) =0
and output
x(t)
y(t) =
x(t)

The true parameters w* = 2.0, ag = 1.0, af

using start-up values of

uN’O =./3.0

This example is again typical in that

duced better estimates than the AVE scheme

u ()

= -1.0 were estimated

it

-.75

the SPLINE scheme pro-

(although the N = 2

SPLINE run did not converge). The convergence of the parameter

estimates is summarized in Tables 03.2.1-03.2.2. The N = 16

results show that the relative Ll error is

about 5% for AVE and 17

for SPLINE. The data fits for N = 8 and 16 were nearly perfect

fits for both AVE and SPLINE. Consequently, no plots are given.
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AVE
N N AN
N a 39 3 eyl
3 2 1.2398 3.8802 1.3463 5.9867
o 4 1.7711 2.1018 - .2201 2.1106
? '
= 8 1.8955 1.5372 - .6522 9895
: 16 1.9404 .9505 - .9033 -2050
. yx = 2.0000 1.0000 -1.0000
1 TABLE 03.2.1
(‘.
SPLINE
AN I\N '\N
¥ il % 3 ley!
2 did not converge _
 ~ 4 2.0320 .9324 -1.1136 .2132
8 1.9995 .9956 -1.0124 0173
16 1.9903 1.0149 -.9840 . 0406
» 2.0000 1.0000 1.0000

-4

TABLE 03.2.2
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CXAMPLE 03.4

For this example we seek to estimate an initial function,
two system coefficients and the time delay. In particular we
assume that the initial position is a constant but unknown value

and hence the model takes the form
¥(t) + 4x(t) + aoic(t-r) + alx(t-r) = u.l(t)
with (partially unknown) initial data
xo(s) =C , ko(s) =0, -r<ssO

and vector output

{—x(t)
y(t) =
x(t)
The parameters C* = 1.0, ag = 1.0, aT = -1.0 and r¥* = 1.0 were
estimated using start-up values
N,O N N
c’ = 0.0, ag'o = .9, a?’o = -.9, r . .9.

For each N = 2, 4, 8 and 16, the AVE scheme did not converpe.
At N = 2 the SPLINE scheme did not converge; however, at N = 4, 8
and 16 the SPLINE procedure converged to good estimates ¢! the

paramcters. This example was also run with other start-ups and

it was obrerved that unless the start-ups were reasonably close
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3 .
i- (i.e. as above) the SPLINE scheme also diverged. The parameter
3' estimates produced by the SPLINE scheme are listed in Table
12 ) 03.4.1. The error \eNl listed in this table is the "Ll error"
$ ? T x ANyt kAN k_aN
.; : IeNI = le—wﬂlL2+|r rl+]a] a0|+la1 ag|
" = ‘C*-CNl + |r*-?N] + 'a6-§g| + |af-§¥‘ .
" Observe that the relative error at each N = 4, 8, 16 is between 1
S
. { and 2 percent.
‘ Figures 03.4.1-03.4.2 show the N = 4 SPLINE data fits. Note
]
‘ that the MLE required 29 iterations to converge.
3 |
- SPLINE
i .
N ~N ~N ~N ~N
‘: E —C__ r 80 81 |eN|
!
. 2 did not converge —_—
‘ 4 .9960 . 9440 1.0135 -1.0085 .0820
8 .9998 . 9999 .9937  -1.0137 .0203
16 1.0011 1.0156 .9874 -1.0131 .0434
1 Yy* = 1.0000 1.0000 1.0000 -1.0000

TABLE 03.4.1
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03, UNUSP ] THR= 29
1.50 I ; T T r I S s
Y1
T %(e) + 4x(t) + apk(e-r) + a;x(t-r) = u () 7
xo(s) =C, :'(O(s) =0
1.10 T
0.70
0. 30
_j !
-0.11 T i .,
+++ data C*x = 1.0 r* = 1,0 ag = 1.0 ai‘ = -1.0
| SPLINE Model c* 2% 9960 *'2% 9440 a8’29-1.0135 a?%.1.0085
~ —
o b =4 + } } 1 —+— 1
0.0y 0. 40 .80 1,27 RS PRTY }
TIME '
FIGURE 03.4.1




- k(L) + 4x(t) + aoa‘z(t-r) + alx(t-t) = “.1(':)

xo(s) =C, Sco(s) =0

Gl WD DES Yl Mg e Seed ey

; 1 -1.20 "W ++ data Cx = 1,0 r* = 1,0 ag =
] —SPLINE Model ¢**2%.9960 *’2%.9440 ag'zg
-—
-2.00 + —+——+ % b 4 - =
0.00 0.40 0.80 1.°0

FIGURE 03.4.2
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t- ot 1
1. 60

2.00




-t

w oo
[V

-96-

ID MODEL 04

——————————— e e e e e

This model is the oscillator considered in ID MODEL 03, with

noise added to the output. In particular, the system is governed

by the equation

x(t) + 4x(t) + x(t-1) - x(t-1) = u.l(t),

with initial data

xo(s)sl s }':o(s)zo , 1l s <0,

and (noisy) output

x() | |y (0

y(t) = + s
x(t) v, (€)

where vi(t) (i=1,2) is a computer simulated normal random var-
iable with zero mean and standard deviations of 0.1 on the position
data (vl) and 0.2 on the velocity data (v2).

The random variables vi(t) (i = 1,2) were generated using
routine GGNQF of the IMSL library (see IMSL Users Guide) and
added to the analytic solution x(t) and x(t) of the delay equation
to produce data (;i,i= 1,2,+-¢+, 101) at 101 equally spaced times
on [0,2]. These values produced rather noisy data, which was uscd

in following examples; 04.2 - 04.3.

i
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EXAMPLE 04.2

For this example we estimate two system coefficients and the

time delay. The model is assumed to have the form

%(t) + 4x(t) + aoft(t-r) + alx(t-r) = u_l(t) R

with initial data

xo(s) =1, io(s) =0, -rss <0,
and output
x(t)
y(t) = .
x(t)

For N= 2, 4, 8 and 16 the approximating identification problem
was formulated and a version of the MLE algorithm described in
[ 9] was used to estimate the parameters ay = 1.0, af = -1.0 and

r* = 1.0. Start-up values for each run were set at

N,O

ag’ = -75, a0 = =75, 0

= .8 .

Except for the N = 2 AVE run, each run converged to reasonablc
estimates for the parametcrs. Again the SPLINE scheme produced
better results. The N = 16 AVE estimates pive about 147 relative
Ll error, while the N = 16 SPLINE estimates have about 17 rclative

Ll error. The convergence results for this problem are summarized

in Tables 04.2.1 and 04.2.2.
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Typical data fits for this problem are illustrated in Figures
04.2.1-04.2.4. Note that the data produced by adding the simulated
noise is indeed very ''moisy'". However, at N = 8 both AVE and SPLINE
do a "good" job of fitting the data. In fact, the N = 8 converged

data fits provide nearly perfect matches to the system outputs with-

out the noise.

TABIE 04.2.2

! AVE
" N N N ley!
R ~ A o e
| E 2 ! il .
S i 2 773.3040 -.9699 65.6704 837.0045
': i
- 4 2.2051 -.9832 1.8078 2.0297
1 Aﬁ 8 1.3959 -.9947 1.2547 .6559
B 16 .7740 -1.0664 1.1142 .4066
| vk = 1.0000 -1.0000 1.0000
]q TABLE 04.2.1
|
|
b SPLINE
E ~N ~N ~N
= E 3.0_ _a_l T ,en|
; 2 1.0813 -1.0254 .8233 .2834 {}
i
4 4 1.0001 -1.0283 .9533 .0751
q
8 .9881 -1.0195 .9937 .0377 J
16 .9850 -1.0156 1.0013 L0319 [f
|
y* = 1.0000 -1.0000 1.0000 =
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Y K
T %(t) + 4x(t) + aofc(t—r) + alx(t-r) = u.l(t) - i}
:‘; 1.20
'{
L
1
“ 0.40
|
P -0.41
1 {
!- !
“1.20 t oot ' :
.
1 +++ data a% = 1.0 a’i‘--lO r* < 1.0
——  AVE Model ag’3=1.3959 ad?= 9947 B sar
2,00 - mp b e e |

0.00 0.40 0.80 1.20
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T %(t) + 4x(t) + aoi(t-r) + alx(t-r) = “.l(t)
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+++ data ag = 1.0 at = -1.0 ™ = 1.0
1
—— SPLINE Model ag’3 = .9881 a§’3 - -1.0195 33 9937 |
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TIME

FIGURE 04.2.3
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Y
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; 4+ X(E) + 4x(t) + agk(e-r) + ayx(t-r) = u 4 (E)
10 20 B . -3
5 )
L - 1 0.40
3 |
i ~0.u1
e
"1 . 20 RE ++ + + -
L» 1 1 +++ data 36 = 1.0 aI = <1.0 r* = 1.0 N
—— SPLINE Model ag’3 = .9881 a1’3 = -1.0195 33+ 9937
2,00+t b -
0.00 0.40 0.80 1.20 1.60 2.00

TIME

FIGURE 04.2.4
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EXAMPLE 04.3

In this problem all of the system coefficients and the time
delay are estimated. In particular the model is assumed to have

the form
x(t) + wzx(t) + ao:':(:-r) + alx(t-r) = u_l(t) ,
with initial data
xo(s) =1, io(s) =0, -rsss0 ,

and vector output

x(t)

y(t) =
x(t)
Start-ups for the true parameter w* = 2,0, ag = 1.0, af = -1.0,

r* = 1,0 were set at

wN’o =/3, ag’o = .75, a?’o = -,75 , rN’o = .8 ,

and runs were made for N = 2, 4, 8 and 16.

For N = 2 neither AVE nor SPLINE converged. At N = 4 the AVE
scheme converged. However, the N = 4 MLE procedure for the SPLINE
approximation never really converged. The MLE algorithm produced a
sequence of parameters that oscillated between two values. These

two values are displayed in Table 04.3.2. Observe that either of
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the two parameter estimates obtained by the SPLINE scheme is 3
better than the AVE estimate. At N = 8 both AVE and SPLINE con-
verged, while at N = 16 the SPLINE procedure again produced two
values for each parameter and the MLE algorithm oscillated between
these values.
The data fits for this example are typical of the previous
examples. Figures 04.3.1-04.3.4 illustrates the N = 8 converged
data fits. The data fits at N = 16 for AVE and SPLINE are almost
the same, and for the SPLINE scheme either of the two parameters

given in Table 04.3.2 produces essentially the same data fits.

AVE
N

~ AN N N
y L % A4 L
2 did not converge —_—
4 1.6475 -2.2109 .1635 .8603 4.7269
8 1.8221 1.6184 -.4164 .8807 1.3799
16 1.7647 1.2959 -.3349 <7405 1.1963

y*¥ = 2.0000 1.0000 -1.0000 1.0000

TABLE 04.3.1
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o
SPLINE
! A\N ~N ~N ~N
O b S
, 2 did not converge —
a 4 2.1246 .6354 -1.4428 1.4526 1.3846
i) 4 2.1191 .6633 -1.4263 1.4161 1.2982
. 8 1.9671 1.0641 - .9164 .9381 .2425 :
}
: 16 1.9436 1.1155 - .8410 .9074 4235
3 16 1.9736 1.0529 - .9373 .9573 . 1847
: y¥ = 2.0000 1.0000 -1.0000 1.0000
TABLE 04.3.2
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U4 . INBHV.

+  %X(t) + wzx(t) + aoi(c-t) + alx(c-r) =u 1(t)

+ . + + + +
+ +
4 + +
+++ data w* = 2.0 ag = 1,0 a’l‘ - -1.0 r* = 1,0

+ —— AVE Model o%°%=1.8221 ag"'al.slsa af"‘--.uoa 224 8807

| | n | | N

% | % | | ] | | I
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TIME

FIGURE V4.3.1
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04.3N8AV. TTR-
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FIGURE 04.3,2
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FIGURE 04.3.4




ID MODEL 05

This model is the second order oscillator considered in 1D
MODEL Ol, with vector output. However, data was generated on a
longer time interval by numerically integrating the equations. In

particular, the system is governed by the delay equation
%(t) + 36x(t) + 2.5%x(t-1) + 9x(t-1) = u 1(t) ,

with initial data

xo(s) =1 , io(s) =0 , -1€£s5 €0 ,
and vector output
yl(t) x(t)
y(e) = =
¥, (£) x(t)

This system was numerically integrated (using a modified 4th order
scheme) to obtain the solution on the interval [0,5]. Data was
generated at 101 equally spaced points (i.e. 20 data points per
unit interval) using this numerical solution.

As a rough check of the numerically produced data, the
numerical solution and the analytic solution were compared on the
interval [0,2]. The numerical solution agreed exactly (i.c. to
eight decimal places) with the analytic solution, giving some in-

dication that the data for this model is reasonably good.

L

G g P
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As a final comment, we mention that the numerical algorithm
used to integrate the delay equation is completely unrelated to
any of the approximation schemes used in the identification
algorithms. Consequently, we are not using data generated by the

algorithm that we are attempting to study.
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EXAMPLE 05.1

For this example we seek to estimate the time delay and two

system coefficients. The model is assumed to be of the form

%(t) + 36x(t) + aoic(t-r) + alx(t-r) = “.l(t) ’

with initial data

xo(s) =1, xo(s) =0 , -r<£s <0 ,

and vector output

x(t)
y(t) =

x(t)

Recall that in this example we have data generated for 5 seconds,
i.e. on the interval [0,5], at 101 points. The parameters to be .-
estimated are r* = 1.0, 36 = 2.5 and af = 9.0. Start-up values

for each run were

N,0
0

N,O

= 2.2 , a1

= 9.5

Other start-up values were attempted and the algorithms were found [j

to diverge if the start-up errors were too large and in some cases

the algorithms converged to parameters different than r*, 36, af.

This again shows that there can be a lack of global identifiability.

Runs for N = 2, 4, 8 and 16 were made for both AVE and SPLINE.
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For low N, the AVE scheme did not converge. However, both AVE and
SPLINE converged for larger N and produced reasonable estimates of
the parameters. These results are summarized in Tables 05.1.1 and
05.1.2. Observe that at N = 16 the SPLINE procedure produced
estimates with approximately 2% relative Ll error, while the N = 16
AVE estimates have relative 41 error greater tham 227.

The data fits for this example are very interesting. This
example is very dynamic and oscillatory on the interval {o0,5].
However, at N = 16 both AVE and SPLINE produce fairly good data
fits, with the SPLINE scheme matching the data better than AVE.
Figures 05.1.1 -05.1.4 show the iteration 0 and converged data
fits for the AVE scheme. Figures 05.1.5-05.1.8 illustrate the

same thing for the SPLINE procedure.

AVE
"N AN AN

i z %0 a4 'l
2 did not converge _—

4 did not converge —

8 .2492 2.8002 - 3.8982 13.9492
16 .9106 1.7439 10.9570 2.8025
y* = 1.0000 2.5000 9.0000

TABLE 05.1.1
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SPLINE
~N ~N ~N
Y i i) & l°nl
2 did not converge —
4 .6812 -2.3261 11.7017 7.8466
8 .9985 2.9163 8.9459 L4719
16 1.0000 2.6016 9.0872 .1888
Y 1.C000 2.5000 9.0000

TABLE 05.1.2
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ID MODEL K1 _

This is a model with continuous kernel. The system 1s governed

by the equation

%x(t) = -3x(t-1) - fg x(t+s)ds + u.l(t)

with initial data
xo(s) =1, -1<€ss0,

and output

y(t) = x(t)

This equation can be transformed to a system of two equations with
no integral term (see pages 63-64 of [ 9 1) and solved using the
method of steps. The analytic solution was obtained by this pro-
cedure and data was generated at 101 equally spaced points on [0,2].

This data was used in the following examples; KL.l, Kl.4.

e ___J




EXAMPLE K1.1

In this example we attempt to identify the kernel by assuming
that it is constant function with unknown value. Therefore, the

model is of the form
x(t) = -3x(t-1) + k ‘[(1’ x(t+s)ds + u  (£)
with initial data
xo(t) =1 , -1€£s<0 ,

and output

y(t) = x(t) .

The constant k* = -1,0 is to be estimated. Runs at N = 2,4,8,16

were made with the start-up of

N,0 _

k 0 .

This example is interesting for several reasons. It is an
example that contains a distributed delay and it is the only

example we have run where the AVE scheme produced better parameter

estimates than the SPLINE scheme. Table Kl.l.1 illustrates the

convergence of the parameter estimates for AVE and SPLINE. Figures
Kl.1.1 and K1.1.2 compare the N = 8 converged data fits for AVE and
SPLINE, respectively. Observe that even though the N = 8 AVE scheme

produced a better parameter estimate, the N = 8 SPLINE scheme does a
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much better job of fitting the data.

AVE SPLINE
I\N I\N
f"_ E_ lenl = li_ ‘en‘
2 -1.2953 .2953 2 -1.2679 .2679
4 -1.0765 .0765 4 -1.0827 .0827
8 -1.0156 .0156 8 ~1.0301 .0301
16 -1.0058 .0058 16 -1.0177 0177
k* = -1.0000 k* = -~1.0000

TABLE K1.1l.1
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: EXAMPLE K1 4

In this example we estimate two system coefficients and the

time delay. As before, the kernmel is estimated by assuming that

it is an unknown but constant function. Therefore, the model is

assumed to be of the fomm

T4,

x(t) = alx(c-r) + k IO x(t+s) ds + u.l(t) ,
-r

- with initial data

i xo(s) =1 , -r£ss0 ,
L
P and output
# y(t) = x(t) .
The true parameters af = -3.0, k¥ = -1.0 and r* = 1.0 we estimated

using start-ups of

". f
a¥’° =-3.5, k%< 1.5, 9= s,

Runs were made for N = 2,4,8 and 16. The AVE scheme did not con-

ettt e

verge for N = 2 and 4. However, for N = 8 and 16 the AVE scheme
converged but produced rather poor parameter estimates. The SPLINE

scheme converged for each N = 2,4,8,16 and for N 2 4 produced good

f
~ i
| 1 parameter estimates. The numerical results for this problem arc )

summarized in Tables Kl.4.l and Kl.4.2. 3;

Figures Kl.4.1 - Kl.4.4 compare the N = 8 AVE and SPLINE data
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In particular, Figures Kl.4.l1 and K1.4.2 show the N = 8 AVE

Figures K1.4.3

and Kl.4.4 show the same thing for the SPLINE procedure.

AVE

N S AN
y i < it Loyl
2 did not converge
4 did not converge
8 .8802 .2182 -4.1641 2.0657
16 .9383 -.3806 -3.5535 1.2346
y* = 1.0000 -1.0000 -3.0000

TABLE Kl.4.1
SPLINE

~N ~N ~N
N r k a \eN\
2 .9100 - 4376 -3.4478 1.1002
4 .9896 -1.0087 -3.0580 .0771
8 1.0018 -1.0390 -2.9953 0455
16 1.0042 -1.0410 -2.9841 .0611
¥ = 1.0000 -1.0001 -3.0000

TABLE Kl.4.1
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Summary Remarks

The major lesson of our experience with the AVE and SPLINE
identification procedures is that SPLINE is generally superior and
commonly displays near quadratic convergence. It has been observed
that the error function EN can have multiple relative minima. In
order to solve the IDN problem we have used a maximum likelihood
estimator (MLE), which in the case of a scalar measurement, is
equivalent to the usual quasi-linerization (QL) procedure for
minimizing EN. Conditions that guarantee convergence of the QL
procedure are rather stringent (see [ 7]) and, in fact, are not
satisfied in our examples. In applications it would seem prudent
to employ a hybrid algorithm for the IDN problem, wherein one
would initially use a method that guarantees descent and then

employ QL only in the neighborhood of a minimizing point.
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6. The optimal ccntrol problem: numerical examples.

In this section we present numerical results for a number of
examples of the optimal control problem (0C). The two schemes
AVE and SPLINE were employed to compute approximating optimal
controls G: and ﬁg for several values of N chosen to illustrate
convergence properties. The linear systems examples given here
are essentially the same as some of the examples considered in
detail in [ 6 ]. For these examples the analytic solution u* of the
optimal control problems can be found in §3 of that report and we
shall not redrive those solutions here. Only one (CB) of the
linear examples presented below was not considered specifically
in [ 6 J; however for the particular case detailed here the optimal
control can be computed by using the maximum principle for delay
systems in the same manner as was done for Example 10 of [ 6 ).
Since the report [ 6 ] is rather complete and easily obtained, we
shall feel free to use the results presented in that technical
report without elaborate comment or discussion. For the motivation
behind our choice of some of the particular examples presented
here and in [ 6 ], the interested reader can consult [ 6 .

We also present below our numerical findings for two nonlinear
examples. The theory for use of the AVE approximations with a
restricted but reasonable class of nonlinear system optimal control

problems is developed in [ 1 ]. Consideration of the arguments given

there along with details of the SPLINE scheme development in [ § |
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. should convince the reader that a corresponding theory for the

SPLINE scheme can be developed in a straightforward manner.

—_——i
.

I
I
i




v : " " g ,,Jqu-m!!!!!I!l-uwu—HEMHu-g..--.-':f

-137-

EXAMPLE C1

The first system is given by the scalar ecustion

x(t) = x(t - 1) +u(t), 0t <3

with initial data

x(s)

n

1, -l<s <0,

and the payoff is chosen as

3
J(u) = 5[x(3)]2 + % g [u(s)]2 ds .
0

The optimal control u* is given by (see page 1l in [ 6 ]

8{-(t-2)%/2-3/2}, 0 <t < 1,
uk(t) = §(t - 3) , 1l st <2

-8 »y 2 st 3,
where & = 370/{6(1 +319/3)} = .5745. The optimal cost is
J* = J(u¥) = 1.7715 .

Table (Cl.1) compares JN and J* for each of the two schemes

AVE and SPLINE. The example is somewhat typical in that (as

one might expect from theoretical investigations - both methods are

basically first order, but the estimates for SPLINE indicate that
one should expect slightly faster convergence for this scheme)

SPLINE converges faster than AVE. Note that the error for SPLINE

at N = 4 is less than the error for AVE at N = 32,
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Table (CL.2) contains the CPU times for each run of the
conjugate-gradient algorithm. As shown, the time to make each run
is very reasonable for both schemes, although SPLINE requires
slightly more time per run. These times were typical for all the
scalar examples.

Tables (Cl1.3) and (Cl.4) compare the controls %N

A
for N= 4, 8, 16, 32. We observe that SPLINE provides a better

and hg to u*

approximation to u* than AVE., It is interesting to note that SPLINE

is not as monotone in its convergence as AVE.

" wen ——— ]

-y 3
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' AVE SPLINE
l N NN N N (3% |
4 1.72491  .0466 4 1.77320  .0017
] 8  1.74750  .0240 8  1.77179  .00029
’ 16 1.75939  .0121 f 16  1.77164  .00014
‘ 32 1.76551  .00599 | 32 1.77159  .00009
J* = 1.7715 I* = 1.7715
TABLE Cl.1
AVE SPLINE
N CPU Sec N CPU Sec
4 23.8 4 30.6
8 28.9 8 39.1
16 39.1 16 59.5
32 56.1 32 93.5

TABLE Cl.2
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AVE
ime 4 -8 216 232 i
0.00  -2.0050  -2.0067  -2.0075  -2.0086  -2.0108
0.25  -1.7340  -1.7386  -1.7400  -1.7405  -1.7450
0.50  -1.499  -1.5069  -1.5092  -1.5092  -1.508l
0.75  -1.2962  -1.3064  -1.3112  -1.3124  -1.3106
1.00  -1.1197  -1.1317  -1.1402  -1.1448  -1.1500
1.25  -0.9662 - .9774 - .9877 - .9955  -1.0054
1.50 - .8335 - .8397 - .8463 - .8527 - .8618
1.75 - .7214 - .7200 - .7170 - .7151 - .7181
2.00 - .6324 - .6272 - .6179 - .6082 - .5745
2.25 - .5708 - .5720 - .5708 - .5706 - .5745
2.50 - .5385 - .5527 - .5623 - .5683 - .5745
2.75 - .5291 - .5504 - .562L - .5683

3.00 - .5286 - .5504 - .5621 - .5683

TABLE Cl1.3
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SPLINE
time ut ud ult w32 ux
0.0 -2.0177 -2.0109 -2.0109 -2.0109 -2.0108
0.25 -1.7447 ~1.7439 -1.7413 -1.7416 -1.7415
0.50 -1.5053 -1.5070 -1.5081 -1.5084 -1.5081
0.75 -1.3083 -1.3094 -1.3105 -1.3106 -1.3106
1.00 -1.1506 -1.1501 -1.1495 -1.1491 -1.1500
1.25 -1.0085 -1.0027 -1.0061 -1.0054 -1.0054
1.50 - .8591 - .8648 - .8629 - .8615 - .8618
1.75 - 7123 - 7147 - .7199 - .7178 - .7181
2.00 - .6095 - .5928 - 5844 - .5805 - .5745
2.25 - 5759 - .5746 - .5749 - .5746 - .5745
2.50 - .5816 - .5750 - .5748 - .5746 - .5745
2.75 - .5694 - .5774 - .5745 - .5746 - .5745
3.00 - .5149 - .5418 -~ .5574 - .5658 - .5745
TABLE Cl.4
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EXAMPLE C2

In this control problem, which is the same rs Example 3B ot

i 6 ., we take as our system the scalar equation

x(t) Izlx(t-l) +u(t), Ost g2

with initial data

x(s) =1 , -l s g0
The payoff is given by
2 ’2 2
Jw) = ¥[x(@)3° + sg [u(s)1* ds .
0

The optimal control is given by (see page 56 in [ 6))

s{m/2)(1-t) + 1], 0st sl

u*(t) =

5 y lstg2,
where 6 = - .9967 (see page 12 of [ 6 ]) and the optimal cost is
J* = J(u*) = 2.6787 .

Table (C2.1) summarizes the convergence properties of jN to
J* and compares the AVE and SPLINE schemes. Again we observe an
improvement by using the SPLINE scheme. Tables (C2.2) and (C2.3)

contain the control values for AVE and SPLINE. A graphical

comparison of QA, ﬁs and u* is presented in Figure C2.1.

¥ -

> ——
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|
ol
B AVE SPLINE
r ! ~ ~ ~ ~
o l N a |JN-J*] N K |JN-J*|
)| 4 2.6765 .0022 4 2.6827 .0040
S
: 8 2.6891 .0104 8 2.6801 .0014

! 16 2.6894 .0107 16 2.6792 .0005

32 2.6864 .0077 32 2.6790 .0003

3

F

; ' J% = 2.6787 J* = 2.6787
L TABLE C2.1

- AVE

- ¢ ine 4 =8 -T6 32 -,
0.00  -2.6371  -2.6122  -2.5962  -2.5834  -2.5623
0.25  -2.1679  -2.1568  -2.1583  -2.1629  =-2.1709

: 0.50 --1.7783  -1.7653  -1.7645  -1.7703  -1.7795
0.75  -1.4593  -1.4324  -1.4086  -1.3933  -1.3881

| 1.00 -1.2112  -1.1762  -1.1363  -1.1005 - .9967
1.25  -1.0410  -1.0240  -1.0069 - .9975 - .9967
1.50 - .9521 - .9709 - .9837 - .9910 - .9967

y | 1.75 - .9263 - .9646 - .9831 - .9910 - .9967

| 2.00 - .9248 - .9645 - .9831 - .9910 - .9967

TABLE C2.2
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.
% i SPLINE
E 3 time a* o w6 w32 u
5  1 0.00  -2.5732  -2.5679 -2.5643  -2.5626  -2.5623
! 0.25  -2.1750  -2.1652 -2,1725  -2.1708  -2.1709
= 0.50  -1.7649  -1.7858 -1.7822  -1.7789  -1.7795
L ? 0.75  -1.3669  -1.3778 -1.3927  -1.3871  -1.3881
E 1.00  -1.0907  -1.0465 -1.0236  -1.0129 - .9967
r - 1.25 - .9986 - .9966 - .9976 - .9968 - .9967
K 1.50  -1.0102 - .9987 - .9974 - .9968 - .9967
* ‘ 1.75 - .9904  -1.0028 - .9968 - .9968 - .9967
2.00 - .8955 - .9409 - .9672 - .9815 - .9967

TABLE C2.3
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EXAMPLE C3

In this example the system is two dimensional and is described

by
xl(t) 0 1 xl(t) 0 0 xl(t-l) 0
d = + + u(t),
dt
x2(t) 0 O xz(t) 0 -1 xz(t-l) 1
-

where 0 € t <€ 2 and the initial data is chosen as

xl(s) 10

il

, 1 s <0,
xz(s) 0

The cost functional is given by
2 2 2
3w =% Dy @1 + 5 { )] as.
0

This system is equivalent to the second order equation (sce Example

5 in[6 ])
§(t) + y(e-1) = u(t),

where xl(t) = y(t) and xz(t) a §(t). The optimal control is given

by (see pages 18 and 66 of [6 ])
/

(/2) 3 - tz) , 0stsl,
uk(t) = <

5(2 - t) N l <t g2,

L

s where 6 = -3.1915, and the optimal cost is

h__ , ol
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J* = J(u*) = 15.9574 .

Table C3.1 illustrates the convergence of JN to J* for AVE

. - - [

i for this two dimensional example with Table (Cl.2) for the scalar

51 : ‘ problem, Example Cl. Note that the total CPU time increased only
- L
73 q few seconds. Tables (C3.3) and (C3.4) compare ﬁi and ﬁg to ut.
2 Note that ﬁgz is almost identical (to 3 places) to u*!
AVE SPLINE
N 3N 13N ] N o 13N %]
i 4 17.3450 1.3876 4 16.0149 L0575
8 16.7215 .7641 8 15.9721 .0147
16 16.3604 .4030 16 15.9618 . 0044
32 16.1649 .2075 32 15.9594 .0020
J*¥ = 15.9574 J* = 15.9574
TABLE C3.1
~

A AV ey R A 1 PP S b e T VAR S A s L

TP s - it~ 158 TP A P TN TP O P Y

and SPLINE. It is interesting to compare the CPU times (Table c3.2)

a

1 eon il i M ae n Ak st enn
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AVE SPLINE

N CPU Sec N CPU Sec
4 25.5 4 28.9
8 28.9 8 40.8
16 34.0 16 62.9
32 54.4 32 105.4

TABLE C3.2

AVE

time N e @ uk
0.00 -4.8886 -4.8486 -4.8210  -4.8044 -4.7872
0.25 -4.7369 -4.7186 -4.7063  -4.6982 -4.6875
0.50 -4.4217 -4.4065 -4.3988  -4.3947 -4.3883
0.75 -3.9406 -3.9124 -3.8976  -3.8919 -3.8896
1.00 -3.3083 -3.2590 -3.227%  -3.2099 -3.1915
1.25 -2.5562 -2.4926 -2.4499  -2.4239 -2.3936
1.50 -1.7279 -1.6711 -1.6359 -1.6164 -1.5957
1.75 - .8670 - .8360 - .8180 - .8082 - .7979
2.00 0.00 0.00 0.00 0.00 0.00

TABLE C3.3
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SPLINE

time o a® ' 82 ur
0.00  -4.8629 -4.8047  -4.7918  -4.7885 -4.7872
0.25 -4.7443 -4.7024  -4.6908  -4.6884 -4.6875 |
0.50  -4.4094 -4.3940  -4.3906  -4.3889 -4.3883 f
0.75 -3.8599 -3.8852  -3.8880 -3.8893 -3.8896 ;
1.00  -3.1497 -3.1794 -3.1883  -3.1906 -3.1915 %
1.25 -2.3598 -2.3835  -2.3909  -2.3930 -2.3936 §
1.50 -1.5463 -1.5829  -1.5925 -1.5950 -1.5957 |
1.75 - .7381 - .783G - .7942 - .7970 - .7979
2.00  0.00 0.00 0.00 0.00 0.00

TABLE C3.4
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EXAMPLE C4

Consider now the three dimensional system

('x <t)’1 ro 1 o—1 (e 1)’] 0|

'u(t) ; n

ﬁ:x?_(:) \o 0 1; x(tl)’ +’|
x3(t)J

! lOOOJLx(tl)J 1

on the interval 0 < t < 3.

i
|
-

We choose as initial function the
constant vector

xl(s)—] M0l .
x2(s) = .0 , -lss<0 ,
x3(s) L 0 __Jl

and the cost is defined by
2 ) 2
JORNEOENOMNEE ATOR LS

This is the same problem as Example 6 in the report [ 6 ]. The

optimal control is found to be (see page 70 of [6 ])

5(1-1:)2, 0Ogstxgl,
u*(t):
0.0 , lgsteg3,
where § - -.4975, and
J* - 4.9751

A numerical summary for this problem is presented in Table

(C4.1)-(C4.4) and Figure (C4.l). The total CPU time is quitc N

reasonable, even for this 3 dimensional system. Note that for
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SPLINE it was necessary to carry JN out to 6 places in order to

compute the difference \JN-J*l.

AVE SPLINE
N S et I B Mty
4 4.9216 .0595 4 4.9754 .0003
8 4.9504 .0248 8 4.9752 .0001
16 4.9635 .0116 16 4.9752 .0001
32 4.9696 .0055 32 4.,9752 .0001
J* = 4.9751 J* = 4.9751
TABLE C4.1
AVE SPLINE
N CPU. Sec N CPU._sec
4 40.8 4 54.4
8 51.0 8 8l.6
16 69.7 16 129.2
32 107.1 32 221.0

TABLE C4.2
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i
t
:
. {
"
8 AVE
B
A ~8 .16 .32
Y time a u_ i ac u*
0.00 -.7201 -.6159 -.5577  -.5274 -.4975
| 0.25 -.4914 -.3958 -.3402 -.3102 -.2798
= 0.50 -.3153 -.2326 -.1830  -.1548 -. 12644
3 |
‘ 0.75 -.1871 -.1212 -.0819  -.0591 -.0311
1.00  -.1002 -.0537 -.0281  -.0145 0.0
1.25  -.0469 -.0190 -.0065  -.0017 0.0
< 1.50 -.0183 -.0049 -.0009  -.0001 0.0
1.75  -.0055 -.0008 0.00 0.00 0.0
' 2.00 -.0011 -.0001 0.00 0.00 0.0
2.25 -.0001 0.00 0.00 0.00 0.0
2.50  0.00 0.00 0.00 0.00 0.0
2.75 0.00 0.00 0.00 0.00 0.0
W 3.00 0.00 0.00 0.00 0.00 0.0
1

: TABLE C4.3
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SPLINE
tive nd at® @2 u
0.00 -.4932 -.4961 -.4966 -.4968 4975
0.25 -.2767 -.2791 -.2793 -.2794 .2798
0.50 -.1256 -.1245 -.1242 -.1242 . 1244
0.75 -.0397 -.0322 -.0313 -.0311 .0311
1.00 -.0052 -.0016 -.0005 -.0002 .00
1.25 -.0015 -.0003 0.00 0.00 .00
1.50 -.0005 0.00 0.00 0.00 .00
1.75 -.0001 0.00 0.00 0.00 .00
2.00 0.00 0.00 0.00 0.00 .00
2.25 0.00 0.00 0.00 0.00 .00
2.50 0.00 0.00 0.00 0.00 .00
2.75 0.00 0.00 0.00 0.00 .00
3.00 0.00 0.00 0.00 0.00 .00
TABLE C4.4
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EXAMPLE 5

This example involves a two dimensional system with two

controls. The equation is (see Example 7 in [ 61) given by

r B r r 7
xl(t) ‘ 0 0 | xl(t - 1) 1 0 ul(t)
H
+

] - |
de x, (£ | 1 0 'sz(c -1 o 1J |y, (e L
JL S A R
where 0 < t £ 2, and the initial data is defined by

r-xl(S)j (—1_]

| =1 , -1l <550,

X, (s) | o1
oL

The cost function is taken as
2 2 2 2 2
Ju) = %{[xl(Z)] + [xz(Z)] 1+ % Q {[ul(s)] + [uz(s)]‘} ds .
20

The optimal control is (see pages 25 and 73 of [ 6]) found tu

Ty *
; uy (t)Al

uz*(t)

be

u*(t) =

where

p+ 6(1 - t) s O<stsgl,

u *(t)

e ) lbt.‘.z,




-
L
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with
g = =-0.1880 and 6 = -0.8718
The optimal payoff has value
J* = 1.4017 .

Ldl

T Y

TR T wa

- e

A

The results for this problem are summarized in Tables (C5.1)-(C5.5),

and Figures (C5.1) - (C5.2).

AVE SPLINE

N 5N | 3N g% N N |3N- 0]

4 1.3620 0397 4 1.4072 .0055
8 1.3839 0178 8 1.4035 .0018 [
16 1.3940 .0077 16 1.4022 .0005 |
32 1.3983 0034 32 1.4019 .0001 ‘
J* 1.4017 J* = 1.4017 J

TABLE C5.1
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AVE - ul L
e ime A 8 ~16 32 -
h b b s 1 o ]i
0.00 -1.0250 -1.0383 -1.0489  -1.0546 -1.0598 |
i
0.25 - .8239 - .8261 - .8320 - .8368 - .8418 ;
0.50 - .6342 - .6219 - .6181 - .6195 - .6239 |
{
{
0.75 - .4639 - L4373 - L4188 - .4087 - 4060
|
1.00 - .3236 - .2919 - 2656 - .2449 - L1880
1.25 - .2248 - .2051 - .1927 - .1872 - L1880
1.50 - .1725 - L1748 - 1797 - .1836 - 18630
1.75 - .1574 - 1712 - 1793 - .1836 - .1880
i
2.00 - .1564 - .1711 - .1793 - .1836 - .1880
TABLE C5.2
AVE - u2
4 8 16 32 T
time 5 U2 Y2 %2 o)
0.00 - .8558 - .8655 - .8695 - .8709 - .8718
0.25 - .8558 - .8655 - .8695 - .8709 - .8718
0.50
0.75
1.00
1.25
1.50
1.75 - .8558 - .8655 - .8695 - .8709 - .8718
2.00 - .8558 - .8655 - .8695 - .8709 - .8718
TABLE C5.3




time 3£
0.00 -1.0531
0.25 - .8340
0.50 - .5980
0.75 - .3732
1.00 - .2202
1.25 - .1677
1.50 - .1716
1.75 - .1698
2.00 - .1533
time EZ
0.00 -.8959
0.25 -.9021
0.50 -.9067
0.75 -.9031
1.00 -.8956
1.25 -.8963
1.50 -.9022
1.75 -.8810
2.00 -.7972
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EXAMPLE C6

We consider a control problem with system given by the scalar

equation
x(t) = x(t) + x(£ -1) + u(t), O <t <2,

and initial data
x(s) = 1 s -1l «8 <0 .
The cost function is defined by
3 2 2 2
Jw o= 5 @I+ 5 L] ds
0

The optimal control (see Example 4 on pages 14 and 63 in [ 6 ]) is
given by

t

+(1-c)el'], 0O<tsl,

u‘k(t) =

§ e , 1l <t 2,

where 5 = -.3932 and

J¥* = 3.1017

The numerical results for this example are summarized in Tables

(C6.1)-(C6.3). vbscrve again that the SPLINE scheme gives better -

approximations to the payofi and control than AVE.




1§ -0%1
3.0084 . 0092
8 3.0554 .0462 8 3.1047 .0031
16 3.0797 .0219 16 3.1030 .0013
32 3.0915 0101 32 3.1026 .0009
J* = 3.1017 J* 3.1017
TABLE C6.1
AVE
time & u® a*® &2 ur
0.00 -3.9668 -3.9702 -3.9726 -3.9734 -3.9742
0.25 -2.8512 -2.8662 -2.8754 -2.8807 -2.8870
0.50 -2.0497 -2.0672 -2.0759 -2.0808 -2.0863
0.75 -1.4759 -1.4917 -1.4964 -1.4968 -1.4986
1.00 -1.0684 -1.0843 -1.0883 -1.0868 -1.0688
1.25 - .7835 - .8042 - .8154 - .8221 - .8324
1.50 - .5876 - .6136 - .6298 - .6389 - .6483
1.75 - 4517 - 4765 - 4904 - 4975 - .5049
2.00 - .3515 - L3711 - .3819 - .3875 - 3932
TABLE €C6.2

Y 0oy YN e

N sy
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SPLINE

cime & 2@ st a2 ur

0.00 ~3.9717 -3.9737 -3.9735 -3.9733 -3.9742
0.25 -2.8895 -2.8854 -2.8870 -2.8864 -2.8870
0.50 -2.0873 -2.0894 -2.0871 2.0858 -2.0863
0.75 -1.5001 -1.4968 -1.4998 -1.4981 -1.4986
1.00 -1.0949 -1.0821 -1.0757 -1.0728 -1.0688
1.25 - .8330 - .8326 - .8326 - .8323 - 8324
1.50 - .6535 - .6488 - 6484 - .6482 - .6483
1.75 - .5012 - .5070 - .5048 - .5048 - .5049
2.00 - .3590 - .3727 - .3819 - .3872 - .3932

TABLE C6.3
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EXAMPIE C7

This example is an interesting two dimensional problem for
which the SPLINE scheme is clearly superior to the AVE scheme. it

is the same as Example 9 in [ 6 ]. The equation is

[-xl(t) {o U, o o]fxc-n (o]
|

4 ‘
dt + ! + u(t) ,
sz(t) 11 0| | x,(t) 0 -1 ixz(t-1j 1

(- -

!
-

where 0 £ t £ 2, and the initial condition is given by

Tx ()] 10

xz(s) L-O

The equation is the vector formulation of the second order scalar

, -1 <8550,

equation

y(t) + y(t - 1) + y(t) = u(t),

which describes an harmonic oscillator with delayed damping. The

cost function is given by

2
J(u) = 5 [xl(Z)]z ry Q fu(s)]? ds .
"0

The optimal control (see pages 31 and 81 in _ 6 ) is given by

g sin (2-0) +=(l-t) sin(t-1), Ostsl,
u*(t) =

§ sin (2 - ) , lstsg2,

S iam—y

!
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where & = 2.5599. The optimal cost is
J*x - 3.3991

This example demonstrates just how much improvement one can obtain
by using the SPLINE scheme in place of AVE.
In order to check the convergence rates of the two algorithms,

we assume that

_ 1 AN . B8
ey =13 -] -k A/m
and
= o aN | . P
?N ) u* ALZ « K2(1/N) ,

where Kl’ K2 and B are constants. The convergence rate, 8, can be

used to compare the two schemes. For example, an algorithm with

A=

B = 2.0 provides faster convergence than an algorithm with 3 = 1.0.

Solving the above equations for 8, we find that

3 = :~<eN/62N) = zn(s«'N/s«'ZN)
or 2

Consequently, 8 can be estimated from the numerical results. Table

) N
C7.1 indicates the computed value of & for J - J¥. Note that 2 is

approximately one for AVE and two for SPLINE. the values of

~N 0 . - .
- u*', used in Table C7.4 werc estimated by using a simple
2

Euler scheme for the intcgration. Again, the convergence ratce g

is approximately one for AVE and two for SPLINE.

= Wy i pdp iy TRETET D W G P APV T Wat—e o e e
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i
i
"
i T—- - - e |l 1
| { AVE L SPLINE
X i AN ~N 5* N
} I N I [J =J*] 8 | N i [ _=J*| ]
2 1 4 2.1515  1.2475 .78 4 3.5354 .1363 1.94
‘ 1 8 2.6711 .7280 .88 8 3.4345 .0354 1.91
1
. 16 3.0035 .3956 .94 16 3.4085 .0094 1.75 1
{
32 3.1929 .2062 - 32 3.4019 .0028 ——--
' J% = 3.3991 Jx = 3.3991 [
{ TABLE C7.1
P——"—‘“‘_— T e e l
AVE
- . 16 [
. time zf EE u__ QEE ux
' 0.00  1.0403 1.1386 1.1931 1.2212 1.2506 i
0.25 1.4574 1.6371 1.7451 1.8038 1.8645
!
0.50 1.7277 1.9522 2.0898 2.1664 2.2467 ﬂ
0.75 1.8163 2.0447 2.1839 2.2628 2.3501
1.00 1.7136 1.9110 2.0259 2.0882 2.1541 li
Y 1.25  1.4369 1.5839 1.6644 1.7052 1.7449 !]
i
' 1.50 1.0259 1.1209 1.1727 1.1997 1.2273 |
1.75 .5313 .5788 .6052 .6191 .6333 [j
|
2.00 0.00 0.00 0.00 0.00 0.00
TABLE C7.2 ﬂ

]
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|
! SPLINE
time G & &t & uk
’ 0.00 1.3669 1.2786 1.2579 1.2527 1.2506
0.25 1.9770 1.8937 1.8717 1.8666 1.8645 ;
0.50 2.3287 2.2683 2.2530 2.2485 2.2467 i
0.75 2.3805 2.3611 2.3527 2.3511 2.3501
1.00 2.1609 2.1552 2.1545 2.1543 2.1541 i
1.25 1.7446 1.7440 1.7447 1.7451 1.7449
1.50 1.2018 1.2210 1.2258 1.2271 1.2273
1.75 .5902 .6232 .6308 .6328 .6333
2.00 0.00 0.00 0.00 0.00 0.00
TABLE C7.3
AVE SPLINE
v N, B N - wf, 8
2 { 2
4 .5650 ..95 4 .0954 1.96
8 .2931 .92 8 .0245 1.95
16 1553 .97 16 .0063 1.75
32 .0795 --- 32 .0018 -~
TABLE C7.4
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4
{ ' EXAMPLE C8
' Except for the initial data this problem is the same as
I ' Example 10 in [ 6]. The system is described by the two dimensional
‘ l cequation
r I . -
x (0] To 1]7x ) ‘ro 0 M1 o]
| ? d _‘ | l |
N g = . . ‘ !
) dt{ | : ' | | +§ {U(L) s
1 X, (t) 0 -17., x,(t) -1 014 x (L—l{J 1
! 2 L ) 2 |
' L J — [. _J L L_ J
: where 0 € t £ 2, and initial data given by
~ -
g xl(s) (ilO-T
: i , -l<ss0.
; | XZ(S) : 0
- - L
The system is the vector formulation of the second order scalar
equation
‘ Fe) + y(t) + y(r-1) = u(L)
The payoff is taken to be
1 0 xl(2) 2 2
= { h ~ b
J(u) = H{[x (2, %, (] [, xy(2) poy (el ds
"0
2 , 2 ”2 2
= 5{lx @] + [x, @17 + 3\ [us) I ds .
0

I

1 Lo
Proceeding exactly as in [ 6 ] with ?:=[()]r@placed by ¢ = [ 0

(see pages 36-45), one finds that the optimal control is given by




- t-1
(u-c‘))et 2 + [2,-36-(u-8)¢t]e + 8(t+2)-u, O<st<l,

U*(t) =
t-2

(u-b8)e + & , lstg2,

where & = -.2593 and ¢y = 5.2262. The resulting optimal cost is

J* = 19.7479 .

~N . . .
The convergence of J to J* is summarized in Table (C8.1).
Again, the convergence rates (i.c.,B) agree with the expucted
l\N s :
theoretical values. The convergence of U to u* is described by

Tables (C8.2)-(C8.4) and plots of GA

N .
NN and u* are given in

Figure (C8.1)

AVE z SPLINE
N o T S S N S N L L Y
4 17.9646 1.7832 .87 4 19.9843 L2364 2.39
8 18.7745 .9733 .95 8 19.7929 .0450 1.72
16 19.2439 .5039 .99 16 19.7616 .0137 1.48
32 19.4935 .2543 --- 32 19.7528 .0049 ----
J*x = 19.7479 g = 19,7479

TABLE C8.1

e ey PR

N
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- s

tie G & g o2 _ur
0.00 -.9029 -.8782 -.8712 -.8701 -.8710
0.25 -.3412 ~.2688 -.2307 -.2133 -.1993
0.50 .2526 .3612 .4276 .4636 L4975
0.75 .8643 .9879 1.0680 1.1170 1.1745
1.00 1.4926 1.6054 1.6739 1.7132 1.7587
1.25 2.1585 2.2469 2.2927 2.313% 2.3319
1.50 2.9139 2.9886 3.0277 3.0476 3.0678
1.75 3.8368 3.9187 3.9645 3.9883 4.0128
2.00 5.0122 5.1115 5.1673 5.1962 5.2262
TABLE C8.2
SPLINE
vime & & i tha ux
0.00 -.8775 -.9746 -.9297 -.9010 -.8710
0.25 -.1303 ~.2995 -.2441 -.2231 -.1993
0.50 .6421 L4472 4667 4785 L4975
0.75 1.3224 1.1445 1.1595 1.1662 1.1745
1.00 1.9007 1.7394 1.7560 1.7575 1.7587
1.25 2.5345 2.3528 2.3485 2.3399 2.3319
1.50 3.3597 3.1217 3.1068 3.0871 3.0678
1.75 4.2533 4.1425 4.0785 4.0463 4.0128
2.00 4.,9126 5.0619 5.1643 5.1955 5.2262

TABLE C8.3
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SPLINE
] N 1wl £
1.69 4 .0875 2.52
1.81 8 .0153 2.26
1.90 16 .0032 1.84
-—-- 32 .0009 ——--

TABLE C8.4
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EXAMPLE C9

This examp'e is the same as Example 13 in 6 1 (with

= 1, sco page 97 of [ 6 ). The system is governed by the

12
equation
xl(t) 0 1 X (t) (70 xl(t-l) 1 0 E“l(tq
d !
.(E = + '| >
xz(t) o -1 (t) {: xz(t-l) 0 1_}L?2(t)

with 0 £ t <€ 2 and initial data

xl(s) (.10
i

-l s5 <0 .

xz(s) [- 0

The cost function is given by

3

2
J = %{[Xl(z)]z + [xz(z)jz] + % & {[ul(s)]z + [uz(s)]z} ds .

Although the optimal control and optimal cost have not been
computed, the numerical results given in the following tables
are similar to the previous examples. Again it appears

that SPLINE provides improved convergence properties over AVE.
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AVE SPLINE

P T T L
4 16.2927 .7615 18.0819 .1814
8 17.0542 L4084 8 17.9005 .0348

16 17.4626 .2014 16 17.8657 .0090

32 17.6640 ----- 32 17.8567  ~----

TABLE C9.1
AVE - u,

t. Aa ’tls 1&16 A32
ime Ul 1 l ul
0.00 -2.3842 -2.5442 ~2.6432 -2.6920
0.25 -1.9485 -2.0417 -2.1157 -2.1601
0.50 -1.4369 -1.4407 -1.4639 -1.4947
0.75 - .8927 - .7962 - L7311 - .7000
1.00 - .3798 - .2166 - .0816 0247
1.25 .0235 .1658 .2578 3042
1.50 .2562 .3092 .3221 L3224
1.75 .3284 L3271 .3239 .3224
2.00 .3331 .3273 .3229 L3224

TABLE C9.2




~4

time u_ u_ u_ u_
0.00 -.3729 -.3578 -.3541 -.3540
0.25 L1412 .1975 .2273 .2407
I 0.50 .6665 .7536 .8068 8354
g 0.75 1.1900 1.2891 1.3527 1.3912
E 1.00 1.7101 1.799 1.8512 1.8798
1.25 2.2453 2.3141 2.3453 2.3573
1.50 2.8403 2.8999 2.9258 2.93064
1.75 3.5615 3.60321 3.6650 3.6788
2.00 4.4788 4.5707 4.6139 4.6321
TABLE C9.3
SPLINE - u,
tine . e ate 22
0.00 -2.7993 -2.7564 -2.7430 -2.7366
0.25 -2.2589 -2.2041 -2.2079 -2.2025
0.50 -1.4849 -1.5456 -1.5454 -1.5400
0.75 - .5920 - .6683 - .7219 - .7100
1.00 .0951 . 1992 .2532 .2783
1.25 .3615 .3467 .3292 .3256
1.50 .3542 .3351 .3295 .3256
1.75 .3336 .3370 L3294 .3256
2.00 . 3040 .3162 .3196 .3206
TABLE CY.4

—
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L SPLINE - up
. time & & at® a2
L 0.00 -.3499 -.3416 -.3488 ~.3520
0.25 3107 .2604 .2622 .2555
% 0.50 9737 .9025 .8753 .8649
E 0.75 1.5378 1.4784 1.4520 1.4428
1.00 1.9986 1.9456 1.9266 1.9185
; 1.25 2.4949 2.4122 2.3821 2.3716
| 1.50 3.1407 2.9946 2.9646 2.9528
| L7s 3.8248 3.7720 3.7109 3.6988
2.00 4.2899 4.4311 4.5281 4.5842
TABLE C9.5
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EXAMPLE C1l0

This is a nonlinear optimal control problem. Although the

basic idea has been developed only for linear systems, much ot the

theory has been extended to a general class of nonlinecar cxamples

(see [ 17). The system is given by the equation

f(e) = x(t)sin[>(t)] + x(t - 1) + u(t), 0 st s 2

L}

with initial data
x(s) =10, -1 <8 <0.

The cost function is
2
= r '12 ' i '\2 - 42
J=k[x(2))" + % J Ix(s)1™ + Jus) )7} ds
0

=N . . . .
Values of J are given in Table (ClO.1}. This problem is such that
Lo . 4N
J¥ is relative "flat". Consequently, the valucs of 1 and the
~N . .. .
controls u changed very little as N - +« . Since the optimal

. ~N .
control u* is not known analytically and 4 were essentially the

. ~N
same for N > 4, we did not give tables for u

AVE SPLINE
N N 52NN N i RRRY
-— v— — — | 'Y
4 162.020 L0010 ! 162.113 .0720
8 162.019 .0010 8 162.041 L0300
16 162.018 .0030 16 162.011 .0080
32 162.015  ----- 32 162,003 ----

TABLE €10.1
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EXAMPLE Cl1

This is a nonlinear example with the same dynamics as
EXAMPLE C10, but different initial condition. The system is

again given by

x(t) = x(t)sin[x(t)] + x(t -1) + u(t), O st <2,

with initial data

x (s) = Q(S) , -1l <s s 0,

where

10(s +1) , -1 =xs

W

-y,
y(s) =

-10s », -5 <s <0 .

The cost functional is given by

2
Sy = Hx() + 3 Ix()2? + [u))F ds
0

This nonlinear problem is more interesting than Example (10,
Although the optimal control is not known analytically, the
numerical runs indicate that the sequence {GN} is "converging' to
an optimal control. If one applies the maximum principle to the
nonlinear control problem, there are two boundary conditions that

the optimal "state' and multiplicr must satisfy. Using

these boundary conditions as a check for the
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l
. :
! | ’
é approximating optimal control problem, we found that the N = lé H
|
f SPLINE procedure produced final values of the "state'" and 3%
! "multipliers'" that most nearly matched the boundary conditions. '
i In view of this fact and the convergence pattern illustrated in ij
{ff‘ Tables Cl1.1-Cll.3, it is reasonable to believe that the N = 16 g;
F. i i
. '} SPLINE run gives a good estimate of the optimal control. -
{ . c4ob 16 =
4 Figure Cll.1l compares plots of Ug> uA with U The plots of !
- 5
: ﬁ: for N = 8, 16 and 32 are almost identical. ‘
f
; f _?
B (7 AVE l SPLINE i
”.‘ ; e e it ) — '{.
E N N ‘AZN ]N‘ A N \'J“-J“] j
— —— [ — — 1} -
4 1.9919 1845 4 2.5406 0179 :
* i
8 2.1764 .1341 ;8 2.5227 .0013 -
i
16 2.3105 .05)7 16 2.5240 .0010 i
‘ 32 2.4012  ----- 32 2.5230 ----- }7
H

! TABLE Cl11.1

-t
F——)

S

|t
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i
] b ~8 16 <32
lI time i it [ o
0.00 -2.3013 -2.3082 -2.3073 -2.3033

1

; ' 0.25 -2.0915 -2.1804 -2.2375 -2.2706

!

3 0.50 -1.8241 -1.9856 -2.1114 -2.1972
& ' 0.75 -1.4673 -1.5752 -1.6470 -1.6906
4 o l ! 1.00 -1.1190 -1.1447 -1.1417 -1.1317
S 1225 - .8349 - .8173 - .7891 - L7697
e 1.50 - .6208 - .5966 - .5761 5669

: 1.75 - .4580 - L4400 - 4321 - .4329

2.00 - .3233 - L3125 - .3098 - .3142
T TABLE C11.2
{
SPLINE
. A -8 .16 .32
time o a o a’”
0.00 -2.331 -2.3024 -2.3017 -2.2967 i
' 0.25 -2.3707 -2.3230 -2.3156 -2.3101
0.50 -2.2820 -2.3034 -2.3106 -2.3126
0.75 -1.6921 -1.7294 -1.7404 -1.7424
1.00 -1.0787 -1.1002 -1.1041 -1.1037
1.25 - .7160 1427 - 7462 - 7497
j 1.50 - .5727 ~ 5644 - .5588 - .5624
! 1.75 - .4978 - .4591 - .4502 - 4451
,: 2.00 - .3960 - .3496 - .3559 - .3265

‘TABLE Cl11.3
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Summary Remarks

In examples C7 and C8 we presented some estimates for the rates
of convergence of JN - J¥* and uN — u. In these cases we found that
the AVE scheme provided essentially linear convergence, while SPLINE
convergence was essentially quadratic. In view of some known
theoretical facts these results are not unexpected. Specifically,
in [ 5] it is shown that for fixed control and sufficiently re-
stricted initial data,we have zN - z is O(l/NB) where 8 = 1 for AVE
and B = 2 for SPLINE. For the linear regulator problem (both OC
and OCN) the optimal control can be generated by state feedback.
1f one assumes that the feedback '"parameters' for OCN also converge
to the feedback "parameters'" for OC (see Delfour [10]) like (1/N5),
then it follows that GN + u¥ convergence is O(I/NB).

Additionally, elementary calculations then reveal that one should
have 3N - J* is also 0(1/NB). For the first-order (piecewisec linear)
spline based method SPLINE, the results presented here, taken with
other numerical experiments that we have performed and reported clse-
where (see "8 "), are stronyg evidence that the method SPLINE

is essentially second order (8 = 2) when used with regulator-type
optimal control problems involving linear delay systems. (This is
not too surprising when onc revicews the literature on finite-clement
methods and investigates such phenomena as super convergence tor

"coercive problems" or "supcrconvergence at nodes'.) The AVE scheme,

on the other hand, appears to be at best only first order (B = 1)




in these problems.
As a further point of comparison we note that SPLINE yields a
1 better approximation for a given value of N in almost every example
1

that we have considered (here and e¢lsewhere). Observe that in

|
~% many of the control examples (Cl -C4, C6 - C8) the results for ;i
| SPLINE at N = 4 are better than those obtained with AVE for N = 32.
oo While the SPLINE scheme is slightly more tedious to imp.iment
and takes a little more computer time because of the matrix systecms .
3 that must be solved (see the Remark at the end of $3), all the

evidence would seem to imply that SPLINE is a superior method to ‘U
AVE in control problems of the type we consider heve.

-r

For control problems with nonlinear systems, the numerical

1 findings to date are not as dramatic or conclusive (in part perhaps
7
- because analytic solutions are not available). 1In addition to the
E

two examples (Cl0, Cll) reported here, numerical studies with other
b

nonlinear systems tend to support the conjecture that SPLINE will

: generally be as good as or better than AVE for nonlinear problems.
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